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Abstract—Blockchain is a trans-generational technology that
is gradually introduced and applied in many fields because of its
characteristics such as tamper-proof, traceability, and decentral-
ization. However, the performance bottlenecks of blockchain have
been one factor that hinders its practical application. This paper
proposes a blockchain performance optimization framework
(called LearningChain). We use a temporal convolution network
to predict the transaction arrival rate of the blockchain and
propose an ensemble learning-based method and a meta-learning-
based method to train a blockchain performance prediction
model, respectively. We design a performance scoring mecha-
nism to dynamically tune the configuration parameters of the
blockchain to optimize the blockchain performance. In addition,
we collect and contribute a blockchain performance dataset
(called HFBTP) for other researchers to research. The sufficient
experimental results and analysis show that LearningChain can
effectively optimize blockchain performance. The quantitative
and qualitative comparisons with related work demonstrate the
superiority and innovation of our work, LearningChain reaches
state-of-the-art, is highly applicable, scalable, and can be applied
to many practical blockchain-based application scenarios and
different blockchain platforms. LearningChain can be comple-
mented with other existing blockchain performance optimization
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tools and methods to further enhance the effectiveness of
blockchain performance optimization.

Index Terms—Blockchain, blockchain performance prediction
model, blockchain performance optimization, machine
learning.

I. INTRODUCTION

W ITH the rapid development of the information age and
the rise of emerging technologies such as artificial

intelligence. The public is becoming concerned about the
security of private data, and many organizations and depart-
ments are increasingly demanding efficiency and security
in data sharing. Blockchain as a distributed and integrated
technology, is naturally suited to solve many existing problems
(e.g., untrustworthy environment [1], privacy protection [2],
data traceability and tracking [3]) because of its tamper-
evident, decentralized and traceable characteristics. In recent
years, blockchain has received increasing attention and has
gained rapid development in theoretical innovation and appli-
cation implementation.

Nowadays, blockchain is integrated into many information
systems and services, include but are not limited to healthcare
(privacy protection [4], privacy authentication [5], information
sharing [6]), intelligent transportation systems (Internet of
Vehicles [7], electronic toll collection systems [8], traffic
big data [9]), smart grid (energy auctions [10], log man-
agement [11], energy trading [12]), Internet of Things (IoT)
(device authentication [13], cloud computing [14], fog com-
puting [15]), federated learning [16].

Even though blockchain has been used in numerous fields,
performance bottlenecks in blockchain (especially throughput
and latency) are one of the significant factors that hinder its
further development. In blockchain, there are many parameters
(e.g., block size, number of nodes, network bandwidth, block
packing interval, etc.) that can affect the performance of
blockchain. In Bitcoin [17], its throughput is limited to 7
transactions per second (TPS) because it uses a block size
of 1 MB and a block packing interval of 10 minutes. As a
result, the Bitcoin network has a large number of transactions
that are blocked and cannot be confirmed quickly. On the
other hand, the consortium blockchain has higher throughput
because it tends to have more flexible configuration space, but
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Fig. 1. How blockchain performance varies for different transaction arrival
rates and block size. (a) Throughput (b) Latency.

this also leads to a higher barrier to use and makes it difficult
for blockchain maintainers to quickly optimize blockchain
performance.

In recent years, researchers have started to optimize the
blockchain performance from different optimization directions
(improvements to consensus algorithms [18], [19], [20],
blockchain sharding [21], [22], and traditional optimization
algorithms-based [23], [24], [25]). Existing work has achieved
good performance, but their scalability and applicability will
be constrained because improvements to consensus algorithms
and blockchain sharding will face a certain technical threshold
and various complexities requirements (e.g., the requirements
of different scenarios, the customization requirements of
blockchain users) when blockchain are actually deployed,
and thus may not be fully applicable to various application
scenarios.

It is necessary and highly valuable to optimize the
performance of blockchain by tuning blockchain parameters.
We conduct a set of experiments to verify the varia-
tion of throughput and latency by varying the block size
on Hyperledger Fabric, each set of experiments was per-
formed 1000 times and the final average was taken. The
results of the experiments are shown in Fig. 1. Setting

different transaction arrival rates and block sizes yields dif-
ferent blockchain performance. How to dynamically tune the
blockchain parameters so that the blockchain performance is
optimal is the main motivation of this paper.

Recently, a few researchers [26] have used machine learning
methods to tune blockchain parameters to optimize blockchain
performance, this can effectively complement and synergize
existing research efforts to optimize the performance of the
blockchain more efficiently. However, the accuracy of their
proposed blockchain performance prediction model can be
further optimized, and the scalability of these methods is
limited (a large amount of data is required for training, which
may lead to additional data collection and training costs).

Ensemble learning is a feasible method to improve
predictive accuracy because it achieves better predictive
performance, stronger generalization, and stability than a
single base model by constructing and combining multiple
different base models [27]. However, a broader and practical
situation also needs to be considered, which is that collecting
large-scale blockchain performance data is difficult, time-
consuming, and labor-intensive. Therefore, training a relatively
accurate prediction model with few blockchain performance
data will effectively improve the applicability and scalability
of blockchain performance optimization methods. With the
rapid development of meta-learning, many researchers [28],
[29], [30], [31] have been investigating how to improve the
training effectiveness and efficiency of meta-learning with
few sample data in recent years. Meta-learning is a machine
learning method that aims to equip models with the ability to
learn, utilizing existing knowledge and experience to quickly
adapt to new tasks without requiring a large amount of data or
training [28]. The advantage of meta-learning for training on
few sample data is significant, but it is of concern that there
is still little research on using meta-learning for blockchain,
which may be due to the small number of datasets available
for research in the current blockchain domain, this shows the
urgency and importance of the work in this paper.

In particular, to better optimize the blockchain performance
by tuning blockchain parameters, we spend several months
collecting a large-scale Hyperledger Fabric performance
dataset (HFBTP) for the training of blockchain performance
prediction model and other researchers to research. We
propose a blockchain performance optimization framework
(LearningChain). To the best of our knowledge, this is
the first work to use ensemble learning and meta-learning
to tune blockchain parameters for blockchain performance
optimization, and HFBTP is also the largest-scale blockchain
performance dataset at this stage.

Our main contributions are highlighted as follows:
• We collect and contribute HFBTP. At present, such

datasets are extremely scarce (which proves that they are
difficult and time-consuming to collect). HFBTP could
be a new benchmark dataset in such studies, and with
HFBTP, researchers can validate the accuracy of their
proposed approaches.

• We propose LearningChain, which includes 3 modules
(the prediction of transaction arrival rate, the modeling of
blockchain performance, and the scoring mechanism for
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blockchain performance optimization). LearningChain is
not dependent on a specific blockchain platform and has
relatively high scalability and applicability to be used in
different blockchain application scenarios and studies.

• The sufficient experimental results and analysis show
that LearningChain achieves state-of-the-art (SOTA) on
different metrics for multiple datasets. The qualitative
comparison and analysis with related work fully demon-
strate the innovation and effectiveness of the work in this
paper, and LearningChain applies to blockchain-based
application scenarios and research problems.

The rest of this paper is organized as follows: in Section II,
we discuss some related work. In Section III, we intro-
duce the overall framework and details of LearningChain.
Section IV introduces the design of the related experiments
and fully evaluates and analyzes the performance and features
of LearningChain. Finally, Section V concludes this paper.

II. RELATED WORK

As blockchain begins to be used in many fields, its
performance issues are gradually beginning to gain the atten-
tion of researchers. Currently, researchers have focused on
different perspectives to optimize blockchain performance.

1) Improvement of Consensus Algorithms. Gao et al. [18]
proposed a blockchain-based distributed data system for indus-
trial IoT and optimized the throughput and latency of the
blockchain using a piecewise hash graph consensus algorithm.
Zhang et al. [19] improved the consensus algorithm used by
the Hyperledger Fabric, thus balancing the performance and
security of the consensus network. Xu et al. [20] proposed an
adaptive extended blockchain with transaction deduplication
function, and achieved higher throughput. When users have
high transaction requirements in the network, blockchain will
expand to meet the requirements, when transaction require-
ments are low, blockchain contracts to save communication
and storage costs.

2) Blockchain Sharding. Cai et al. [21] proposed a sharding
system that improves performance through collaboration-
based sharding while protecting the security of each shard.
Li et al. [22] proposed a new sharding system to improve the
throughput of blockchain, which periodically migrates active
accounts from heavily loaded shards to less loaded shards,
thus dynamically balancing the transaction load on different
shards.

3) Traditional Optimization Algorithms-Based:
Jamil et al. [23] used a particle swarm optimization
algorithm to analyze the relationship between throughput
and latency in Hyperledger Fabric to find the optimal
transaction arrival rate to optimize throughput versus latency.
Chen et al. [24] constructed a real private Ethereum IoT
network and probabilistically fitted the performance for
latency. Wilhelmi et al. [25] analyzed numerical blockchain
performance results and used Markov Chain to select the
optimal block size to optimize latency.

4) Machine Learning-Based Optimization. Wang et al. [26]
used Multilayer Perceptron (MLP) to train blockchain
performance prediction model and Long Short-Term Memory

(LSTM) to predict transaction arrival rates. This is our
previous work where we proposed a blockchain performance
optimization scheme based on deep learning, but we did not
consider the collection of blockchain performance datasets to
be difficult and time-consuming, the usability of the prediction
model at small sample data sizes, and the fact that the proposed
methods still have space for further optimization, which is the
main research motivation of this paper.

However, based on the above work, there are still some
refinements that can be made. We provide a detailed compar-
ison in Table IX.

III. LEARNINGCHAIN SYSTEM MODEL

In this section, we introduce the overall framework of
LearningChain, including the prediction model of transac-
tion arrival rate, ensemble-learning blockchain performance
prediction model, meta-learning blockchain performance
prediction model, and scoring optimization mechanism.

A. Overall Framework

Our proposed LearningChain blockchain performance
optimization framework is shown in Fig. 2, which contains
3 main modules.

1) Blockchain System: A running blockchain system gen-
erates a lot of performance data, including throughput and
latency. Due to differences in transaction arrival rates and con-
figuration parameters (e.g., block size, number of nodes, etc.),
blockchain performance data can vary. This module is respon-
sible for collecting transaction arrival rate and blockchain
performance data of a certain size, thus providing the basis
for training machine learning models.

2) Learning Model: In this module, a temporal convolution
network (TCN) is used to predict the arrival rate of transactions
at a certain point in the future, while we choose either an
ensemble-learning model or a meta-learning model to predict
the performance of the blockchain based on the size of the
data volume.

3) Blockchain Performance Optimization: In this module,
we propose a blockchain scoring optimization mechanism.
We input the predicted transaction arrival rate and differ-
ent blockchain configurations into the trained blockchain
performance prediction model and score them. After that,
the configuration with the highest score is adjusted to the
blockchain, thus completing the dynamic optimization of
blockchain performance.

In addition, the specific optimization process of
LearningChain is shown in Fig. 3, which can be divided 3
into steps.

1) Preparation: To effectively tune the configuration param-
eters of the blockchain using machine learning methods to
optimize the blockchain performance, a certain amount of data
needs to be prepared for training first. In this module, two
types of data need to be collected, i.e., historical time-series
data on transaction arrival rate and blockchain performance
dataset. In addition, to make the optimization effect match
the expectations of blockchain maintainers (researchers) as
much as possible, the weight (throughput and latency) of
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Fig. 2. The overall framework of LearningChain.

optimization needs to be set according to the actual needs. In
short, by setting different weights, the effect of optimization
makes a difference.

2) Modeling: After obtaining datasets, we first use TCN to
complete the prediction of the transaction arrival rate, which
will help the subsequent blockchain performance optimization.
Meanwhile, we propose blockchain performance prediction
models based on ensemble learning and meta-learning for
different situations, respectively. The ensemble learning-based
blockchain performance prediction model is used when the
data available for training is sufficient, otherwise, the meta-
learning-based blockchain performance prediction model is
used. In real scenarios, the transaction arrival rate varies from
time to time. For example, in an intelligent transportation
system, if the traffic flow is considered as the transaction
arrival rate, the transaction arrival rate is significantly higher
during peak hours than during other hours. We need to

predict the transaction arrival rate in some future period in
advance (e.g., after 5 minutes) and input it as a parameter
into the trained blockchain performance prediction model to
optimize the blockchain performance more accurately and
effectively.

3) Optimization: After training with the dataset, the trans-
action arrival rate prediction model and the blockchain
performance prediction model have achieved high prediction
accuracy. Taking the optimization of blockchain performance
after 5 minutes as an example, the complete optimization
process is as follows. We first predict the transaction arrival
rate after 5 minutes and input it into the trained blockchain
performance prediction model along with each blockchain
configuration available for tuning, at which point we will
get different predicted blockchain performances. Next, we
can calculate the score for each blockchain performance with
the performance scoring optimization mechanism and the
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Fig. 3. The blockchain performance optimization process of LearningChain.

Fig. 4. The framework of TCN.

setting of weights. Finally, we select and tune the blockchain
configuration with the highest score.

The details of each module and process are introduced in
the following.

B. Prediction of Transaction Arrival Rate

To optimize the blockchain performance more effectively,
we first need to predict the transaction arrival rate in a certain
period in the future (e.g., peak hours, when the optimization
benefits are often higher) and complete the adjustment of the
blockchain configuration parameters in advance, to achieve the
blockchain performance optimization.

In this part, we introduce how to use TCN to predict the
short-term transaction arrival rate of the blockchain. To obtain
a more accurate prediction effect and thus improve the scal-
ability and usability of blockchain performance optimization,
we predict the transaction arrival rate for a future period
based on a given 60-minute historical transaction arrival rate.
Bai et al. [32] introduced convolutional neural networks to
time series modeling and proposed TCN for processing time-
series data. TCN model mainly consists of two parts, which are
the causal dilated convolution and the residual block, which
are shown in Fig. 4.

Recurrent neural networks and their variants perform recur-
sive processing of long sequences, which leads to long training
times and gradient disappearance or explosion problems.

Fig. 5. The framework of ensemble-learning blockchain performance
prediction model.

However, convolutional neural networks can compute in paral-
lel and can expand the receptive field by increasing the depth
of the convolutional layers. The causal dilated convolution
operator in a temporal convolutional network can be defined as

x � f =
K−1∑

k=0

fkxt−d×k (1)

where x ∈ R
T denotes a one-dimensional time series, f ∈ R

K

denotes the convolution kernel. The parameter d denotes the
dilation factor and � denotes the convolution operation. By
increasing the dilation factor d, the receptive field in the time
domain grows exponentially, which enables the temporal con-
volutional network to capture longer time series information
by stacking only a smaller number of convolutional layers.

C. Blockchain Performance Prediction Model

In this section, we provide a detailed description of the
blockchain performance prediction model. The purpose of
the model is to predict the blockchain performance based
on blockchain configuration data. Formally, we define the
blockchain configurations data as {X1,X2, . . . ,XN }, where
each sample Xi∈R1×C , and C is the attribute dimen-
sion of the blockchain configurations data. The blockchain
performance is represented by {Y1,Y2, . . . ,YN }, where
each sample is used to predict two performance metrics,
i.e., throughput and latency, and therefore Yi represents
throughput or latency. N represents the total number of
blockchain configurations data samples.

To adapt to more application scenarios, we propose two
blockchain performance prediction models. When the amount
of data is sufficient, high-accuracy prediction results are
obtained by the ensemble-learning model, but since collecting
blockchain performance datasets of sufficient size is both time-
consuming and difficult, using ensemble-learning is costly
in many scenarios, which limits the application scenarios
of using machine learning methods to optimize blockchain
performance. This is a typical few-shot learning problem
(i.e., training a relatively accurate model with dozens or even
fewer data samples), so we introduce meta-learning to solve
this problem.

1) Ensemble-Learning Blockchain Performance Prediction
Model: The ensembling process is shown in Fig. 5. First,
multiple different base models are trained, and then the results
of these base models are averaged to obtain the final result.
Where, M1, M2,. . . , Mn represent different base models, P1,
P2,. . . , Pn represent the outputs of these base models, n
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represents the number of base models, and Pt represents the
output of the entire model.

To ensure the effectiveness of ensemble learning, the base
models must have good performance. If the performance of
a base model is poor, the overall prediction performance of
the model will also decrease. In addition, the base mod-
els should be relatively independent and diverse so that
ensemble learning can capture complementary information
between the base models. Therefore, we choose five mod-
els with good performance and different implementation
principles, including MLP, KNeighborsRegressor (KNR),
GradientBoostingRegressor (GBR), BaggingRegressor (BR),
and RandomForestRegressor (RFR). Among them, MLP is
implemented by building a three-layer fully connected neural
network, in each layer of MLP, we use ReLU [33] as the
activation function, and the loss function of the model is
defined as:

L =
1

N

N∑

i=1

(
Yi − Ŷi

)2
(2)

among them, where N represents the number of samples, Yi

represents the true label, and Ŷi represents the predicted label.
The other base models are implemented using the library
provided by scikit-learn.1

2) Meta-Learning Blockchain Performance Prediction
Model: The essence of few-shot learning is pre-learning, which
transfers experience from a set of similar tasks, allowing the
model to establish a robust prediction model with only a
few samples in a new task. One solution is to treat few-shot
learning as a meta-learning problem, where Model-Agnostic
Meta-Learning (MAML) is a representative and excellent
meta-learning method that can effectively address the few-shot
problem [28]. Compared with other meta-learning methods,
MAML is a task-agnostic learning method with almost no
assumptions about the form of the model, introducing only
a small number of parameters and adopting mainstream
optimization processes such as gradient descent. In other
words, MAML can find the optimal initial parameters for the
network model, so that good results can be obtained in few-
shot tasks with only a few gradient update steps.2 Based on
the characteristics and advantages of MAML, we use it to
solve the problem that blockchain cannot be quickly optimized
for performance without sufficient scale data so that a usable
blockchain performance prediction model can be trained with a
few performance data samples to quickly optimize blockchain
transaction performance. The framework of meta learning-
based blockchain performance prediction model is shown
in Fig. 6.

In meta-learning, we divide the dataset into Dmeta−train

and Dmeta−test , where Dmeta−test represents our target
dataset with very few samples, and Dmeta−train is an external
dataset consisting of data types similar to Dmeta−test . The set
of tasks p(T) is constructed by meta-training set Dmeta−train ,

1https://scikit-learn.org/stable/
2Ensemble learning methods usually require a large amount of training data

to fit the actual distribution of the data, which improves the generalization
ability and reduces the risk of overfitting. However, the data samples are not
adequate will lead to accuracy decreases significantly.

Fig. 6. The framework of ensemble-learning blockchain performance
prediction model.

and each task contains only a few samples. Then, a batch
of learning tasks Tb is sampled from p(T), where each
task Ti ∈ Tb consists of a support dataset Dsupport and a
query dataset Dquery . Because the MAML method is model-
agnostic, we still choose MLP as the base model. During
the meta-training phase, MAML is trained using a double
optimization process, which includes inner and outer loop
updates [34] that operate on a batch of related tasks at each
iteration. In the inner loop, the base model fθ is initialized
with parameters θ given by the Meta Learner, and gradient
descent is performed on Dsupport for each task to update the
model. The loss function L in the inner loop is consistent with
Eq. (2), to optimize the model’s parameters on Dsupport to
achieve better performance on the Dquery .

In the inner loop update, given a model fθ parameterized
by θ, the gradient update of θ after one iteration on task Ti

can be expressed as follows:

θ′i = θ − α∇θLTi
(fθ) = θ − α∇θL

(
DTi
support ; θ

)
(3)

where α represents the learning rate of the inner loop, L
represents the loss function, and DTi

support represents task
Ti randomly sampled from Dsupport . The above gradient
update can be performed multiple times. The goal of the Meta
Learner is to obtain meta-knowledge from all tasks Ti∼p(T )
to optimize the parameter θ, so that the model can quickly
adapt to new tasks within a few gradient steps on the support
set and achieve maximum performance on the query set. The
parameters θ∗ of the Meta Learner are obtained by minimizing
the following loss:

θ∗ = argminθ
∑

Ti∼p(T )

L
(
DTi
query ; θ

′
i

)
(4)

in outer loop updates, we perform meta-optimization using
Eq. (4) to obtain θ∗. Specifically, we update θ using stochastic
gradient descent with back-propagated loss:

θ∗ ← θ − β∇θ

∑

Ti∼p(T )

L
(
DTi
query ; θ

′
i

)
(5)

where β is the learning rate for outer loop updates. The outer
loop update updates θ′i based on the performance of θ on
DTi
query , a batch of meta-training tasks.
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TABLE I
LIST OF NOTATIONS

As we can see, the update to θ is through the gradient of
the gradient (using θ to compute θ′i in Eq. (3) and using θ′i
to update θ in Eq. (5)) during meta-training. During meta-
testing, given a new task Tj from Dmeta−test , we fine-tune
and optimize the model θj by performing inner loop updates
on D

Tj
query . Note that outer loop updates are not present during

meta-testing.

D. Blockchain Performance Scoring Optimization
Mechanism

In the previous subsection, we introduce the proposed
learning-based blockchain performance prediction models. To
further enhance the usefulness and value of the models and to
guide the application in real scenarios, we further implement
the optimization of blockchain performance based on it. The
symbols used in this subsection are shown in Table I.

We define a score function that is expressed as

Scorei = WeightThr ∗ ScoreThr
i +WeightLat ∗ ScoreLati

(6)

for each BPCi , we can calculate its ScoreThr
i and ScoreLati .

Therefore, we can find out the BPCi that obtains the optimal
performance according to Scorei . To better match the needs
of realistic scenarios and thus allow blockchain maintainers
to effectively control the bias of performance (e.g., pursuing
lower latency, or pursuing higher throughput), the weighting
factor WeightLat and WeightThr is given to ScoreLati and
ScoreThr

i , respectively.
To ensure the fairness and effectiveness of the weight

setting, it needs to satisfy the following Eq. (7).

1 = WeightThr +WeightLat (7)

ScoreThr
i =

Thri − ThrMin

ThrMax − ThrMin
(8)

ScoreThr
i is 0 when Thri is equal to ThrMin and 1 when

Thri is equal to ThrMax .

ScoreLati =
Lati − LatMax

LatMin − LatMax
(9)

ScoreLati is 0 when Lati is equal to LatMax and 1 when Lati
is equal to LatMin .

Blockchain maintainers can manually set the weights to
match the needs of real-world scenarios. However, the use
of manual settings is often blind and cannot be adjusted
in real time according to the actual situation. Therefore,
we optimize and improve the scoring mechanism to make
it more in line with the needs of realistic scenarios and
enhance its scalability. We propose a weight-setting strategy
to complement this so that when blockchain maintainers do
not set weights manually, they can also flexibly accomplish
the optimization of blockchain performance.

The primary strategy is Ratio. we can set WeightThr and
WeightLat according to Ratio, which is expressed as

Ratio =
ThrMax − ThrMin

LatMax − LatMin
(10)

according to Ratio, the degree of fluctuation of throughput
and latency can be effectively determined. When Ratio is
large, it means that boosting WeightThr can achieve signifi-
cant results:

WeightThr =

{
WeightThr

1 , if Ratio ≥ ThresRatio ;

WeightThr
2 , otherwise

(11)

in addition, the secondary strategy is the judgment and weight
set by ThresLat . which can be expressed as

WeightLat =

{
WeightLat1 , if LatMin ≤ ThresLat ;

WeightLat2 , otherwise
(12)

when LatMin is less than or equal to ThresLat , higher
throughput should be pursued as much as possible (e.g., set
WeightThr to 1 and WeightLat to 0), while when LatMin is
greater than ThresLat , the latency should be reduced as much
as possible (e.g., set WeightThr to 0 and WeightLat to 1).

With such a design, we can further refine the setting way
of WeightThr and WeightLat to avoid blind (meaningless)
weight setting, so that the scoring mechanism for blockchain
performance is more scalable and feasible.

The blockchain parameters corresponding to the highest
score ScoreBest are the optimal blockchain parameters corre-
sponding to the next time slice. The specific process is shown
in Algorithm 1. We divide the execution flow of Algorithm 1
into 4 steps, details are given as follows.

1) Predicting the Transaction Arrival Rate: The future
transaction arrival rate is predicted based on the previous T
transaction arrival rates, as shown in line 4 of Algorithm 1. In
the case scenario considered in this paper, we set T to 12 and
P to 1.

2) Predicting the Blockchain Performance: For each
blockchain parameter that can be selected, we feed it into the
trained blockchain performance prediction model to predict
and save different blockchain performances. The number of
nested loops is equal to the number of parameters that can
be selected, thus traversing every possible combination of
parameters, as shown in lines 5-11 of Algorithm 1.

3) Setting Weights: Based on the defined weight setting strat-
egy, we set the weights to optimize blockchain performance
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Algorithm 1 Dynamically Tuning Blockchain Parameters
1: Input:
2: The transaction arrival rate of last T time steps: XT =
{xt−T+1, . . . , xt}; The trained TCN model for predicting
transaction arrival rate XP = {xt+1, . . . , xt+P} in
the next P time steps: TCN; The trained blockchain
performance prediction models: ModelLat , ModelThr ;
The set of blockchain parameters that can be selected:
P = {P1, . . . ,PN }; The set of blockchain parame-
ter Pi that can be selected: Pi = {P1

i , . . . ,P
M
i };

ThresLat ,ThresR;
3: Procedures:
4: XP = TCN (XT )
5: for P i

1 in P1 do
6: for P i··· in P··· do // N loops (N parameters)
7: for P i

N in PN do
8: Add ModelLat (XP ,P

i
1,P

i···,P i
N ) to Lat, Model

Thr (XP ,P
i
1,P

i···,P i
N ) to Thr, and [P i

1,P
i
...,P

i
N ] to

BPC
9: end for

10: end for
11: end for
12: if Ratio ≥ ThresRatio then
13: Eq. (11)
14: else if LatMin ≤ ThresLat then
15: Eq. (12)
16: else then
17: WeightLat = WeightLat2 , Eq. (7)
18: end if
19: i = 0, ScoreBest = 0, BPCBest = BPC0

20: while i < BPC .Length() do
21: Eq. (6)
22: if Scorei > ScoreBest then
23: ScoreBest = Scorei , BPCBest = BPCi

24: end if
25: i ++
26: end while
27: Tuning the configuration of the blockchain to BPCBest

more effectively and flexibly. As shown in lines 12-18 of
Algorithm 1.

4) Optimizing the Blockchain Performance: The blockchain
parameters are tuned to the optimal block parameters
BPCBest , as shown in lines 19-27 of Algorithm 1.

The time complexity of Algorithm 1 depends on 3 parts.
Firstly, each layer of convolutions is O(k ∗ T ∗ d2), where
k is the kernel size of the convolutions, T is the time series
length, and d is the representation channel. Because of dilated
convolution, O(logkT ) layers of convolution operations are
required to be stacked. So the time complexity of line 4 is
O(logkT ∗k ∗T ∗d2). Secondly, the number of loops depends
on the number of blockchain parameters that can be selected,
when the number of blockchain parameters is N, the number
of loops is N. Our proposed performance prediction models
only need to perform one forward propagation computation
on new input data during the prediction phase, each step of

the computation is based on the trained weights and biases,
which are fixed during the training phase. Therefore, the time
complexity of lines 5-11 is O(MN ), because the number of
blockchain parameters available for tuning tends not to be
too large and the range of values for each parameter tends to
be limited so that the total time complexity is acceptable. In
summary, the time complexity of Algorithm 1 is O(MN ).

IV. EXPERIMENTAL EVALUATION AND ANALYSIS

In this section, we design different experiments to verify and
analyze the performance and effectiveness of LearningChain.
Qualitative comparisons are also made with related work to
illustrate the innovation of LearningChain. All experiments
were done on a Workstation (64-bit Intel Core i9-12900K
3.2GHz, 128GB RAM, and Windows 11 operation system).

A. Experimental Settings

1) Experimental Design: We design four experiments
to fully and adequately demonstrate the performance,
effectiveness, and feasibility of LearningChain: (1) The
prediction performance on transaction arrival rate; (2)
The performance of ensemble learning-based blockchain
performance prediction model; (3) The performance of meta
learning-based blockchain performance prediction model.
(4) The effectiveness of scoring optimization mechanism.

2) Datasets: In experiment (1), we use a open-source
dataset3 for the prediction on transaction arrival rate. The
dataset is a simulated dataset of transaction arrival rates
obtained by processing real-world parking records, which
contains two parameters, timestamp and transaction arrival
rate. Therefore, this dataset can be used to validate the
effectiveness of our proposed transaction arrival rate prediction
model.

In experiments (2) and (3), we use an open-source dataset
and our contributed blockchain performance dataset HFBTP to
verify the performance of LearningChain: BPD4 and HFBTP.
BPD includes four sub-datasets, based on Hyperledger Fabric,
which contains four parameters, transaction arrival rate, block
size, latency, and throughput. To collect HFBTP, we deploy
Hyperledger Fabric 2.3, and the blockchain performance
testing tool is Hyperledger Caliper 0.5.0. We set up three
Organizations, each containing three Peer nodes, it con-
tains five parameters, [3, 5, 7, 9] Orderer nodes, [10, 15,
20, . . . , 200] transaction arrival rate, [10, 15, 20, . . . , 800]
block size, latency, and throughput. HFBTP (24687 data in
total) is larger than BPD (4120 data in total), BPD and HFBTP
also can be used to validate the effectiveness of blockchain
performance prediction models.

3) Comparable Methods: In experiment (1), the SOTA
method [26] (LSTM-based) and Auto-Regressive Integrated
Moving Average (ARIMA, a statistical temporal series
prediction method) are compared with LearningChain.

In experiments (2) and (3), to further demonstrate
the superiority and performance of LearningChain, the

3https://www.kaggle.com/datasets/loveffc/transaction-arrival-rate-
blockchain-for-parking

4https://www.kaggle.com/datasets/loveffc/blockchain-performance
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Fig. 7. The prediction performance of different models for transaction arrival
rate (5 minutes period).

SOTA method [26] (MLP-based) and seven traditional
machine learning models are compared with LearningChain:
LinearRegression (LR), AdaBoostRegressor (ABR),
DecisionTreeRegressor (DTR), KNR, GBR, BR, and RFR.

4) Evaluation Metrics: In experiments (1-3), we take the
mean squared error (MSE) as the loss function of our model
for training. We adapt the commonly used mean absolute
error (MAE), mean absolute percentage error (MAPE), and
root mean square error (RMSE) as evaluation metrics for
regression.

The specific experimental details and evaluation analysis are
detailed in the corresponding subsection. HFBTP and code
open-sourced for this paper are available.5

B. The Performance of LearningChain

1) The Prediction Performance on Transaction Arrival Rate:
In this experiment, the input data is mapped between [0,
1] using min-max normalization. We use 70% of the data for
training, 20% of the data for testing, and the remaining 10%
of the data for validating. We perform a grid search strategy
on the validation set to locate the best hyperparameters. We
use the Adam optimizer for training. The learning rate is set
to 0.001. The hidden state dimension of TCN is set to 128,
and the hidden layer is set to two layers. The batch size is set
to 64, and early stopping is used to avoid over-fitting.

To fully validate that the proposed TCN-based transaction
arrival rate prediction model has good generalization and
robustness, we choose multiple periods (1, 2, and 5 minutes)
for the experiments.

The experimental results are shown in Fig. 7 and Table II.
Compared with two different models, our proposed model
achieves a smaller prediction error, which can effectively
capture short-term and long-term temporal dependencies.

In addition, the computational performance of our proposed
method transaction arrival rate prediction method is supe-
rior compared to existing SOTA work. The training time
(epoch), inference, and CPU memory of [26] are 2.69s, 0.53s,
and 370MB, respectively. The training time (epoch), inference,
and CPU memory of our proposed model are 1.49s, 0.53s, and
361MB, respectively. The shorter training time and smaller

5https://github.com/JishuWang/LearningChain

TABLE II
THE PREDICTION PERFORMANCE ON TRANSACTION ARRIVAL RATE

memory footprint of our proposed method make it more
scalable and practical.

In real-world scenarios, the prediction period of the transac-
tion arrival rate needs to be reasonably considered and set as it
coincides with the tuning period of the blockchain parameters.
When the transaction arrival rate in a specific scenario is
more stable over some time, the prediction period of the
transaction arrival rate should be set to a larger value to avoid
too frequent parameter adjustments, thus reducing the cost
of blockchain parameter adjustments. When the transaction
arrival rate fluctuates frequently within a period, the prediction
period should be set to a smaller value, to effectively ensure
the effect of blockchain performance optimization.

2) The Performance of Ensemble-Learning Blockchain
Performance Prediction Model: We use the Adam optimizer
for training. The learning rate is 0.001, and the batch size is 32.
The reported results are the average of 5-fold cross-validation.

The results of the experiments conducted on data set BPD
are shown in Table III. The adequate experimental results
show that our proposed ensemble-learning-based blockchain
performance prediction model obtains SOTA in most of the
experimental results. This demonstrates our proposed method
can lead to better and more comprehensive prediction models
by making full use of the information learned from each
base model and improving the effectiveness and feasibility of
blockchain performance optimization.

Notably, traditional machine learning models also achieved
relatively accurate results for the task of throughput prediction,
probably because the task falls under the more traditional
category of numerical regression.

Our method obtains a significant improvement in all the
latency prediction results compared to the existing SOTA
work. On the other hand, since the range of values for through-
put is larger than that for latency, the error in throughput is also
higher than the error in latency in the experimental metrics
(MAE, and RMSE).

In addition, to further validate the performance of our
proposed ensemble learning-based blockchain performance
prediction model, we also conduct comprehensive experiments
on the HFBTP. The experimental results are shown in Table IV
and Fig. 8. Compared with existing SOTA work, our proposed
ensemble learning-based blockchain performance prediction

Authorized licensed use limited to: Yunnan University. Downloaded on April 21,2024 at 07:21:29 UTC from IEEE Xplore.  Restrictions apply. 



1826 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 2, APRIL 2024

TABLE III
THE PREDICTION PERFORMANCE OF DIFFERENT MODELS ON BPD

Fig. 8. The prediction performance of blockchain performance prediction model on HFBTP. (a) block size = 50 (b) block size = 100 (c) block size = 150
(d) block size = 200.

TABLE IV
THE PREDICTION PERFORMANCE OF DIFFERENT MODELS ON HFBTP

model has higher accuracy and the visualization results show
that our proposed model is more stable.

3) The Performance of Meta-Learning Blockchain
Performance Prediction Model: In this experiment, we
consider that the smaller the number of training samples
required, the better the scalability of the proposed meta-
learning-based blockchain prediction model. Therefore, in
the comparison experiments in this section, we consider the
sample size and training effect together, we set the sample size
of the experiments to 20-shot, and in this case, we conduct a
full experimental comparison and analysis with other existing
approaches or related work.

We only provide 20 data samples for model training, the
results of the experiments conducted on BPD are shown in
Table V. In such a case, the advantages of our proposed

meta-learning-based blockchain performance prediction model
are very obvious, and SOTA is achieved on all experimental
results, and the error has been reduced to a low level,
which can meet the needs of practical scenarios and validates
the feasibility and effectiveness of our proposed approach
compared to existing approaches and related work.

The prediction performance of the existing SOTA work
and different traditional machine learning models is very
poor when the amount of data available for training is very
small. Compare this to the case in the experiment (2) where
sufficient data was provided for training to obtain relatively
accurate predictions. In this experiment, because the amount
of data available for training is only 20, only our proposed
meta-learning-based blockchain performance prediction model
achieves relatively low prediction errors, which fully demon-
strates the clear advantages and high scalability of our
proposed method when only a small amount of blockchain
performance data is available.

We also conduct experiments on HFBTP. The experimental
results are shown in Table VI and Fig. 9. Our proposed
meta-learning-based blockchain performance prediction model
still achieves superior prediction results compared to existing
SOTA work. Fully comprehensive experiments on multiple
datasets show that our proposed model is still working even
when the amount of data available for training is very small,
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TABLE V
THE PREDICTION PERFORMANCE OF DIFFERENT MODELS ON BPD (20-SHOT)

Fig. 9. The prediction performance of blockchain performance prediction model on HFBTP (20-shot). (a) block size = 50 (b) block size = 100 (c) block
size = 150 (d) block size = 200.

TABLE VI
THE PREDICTION PERFORMANCE OF DIFFERENT

MODELS ON HFBTP (20-SHOT)

which will effectively reduce the cost and threshold of the
blockchain performance optimization approach proposed in
this paper, thus further enhancing the scalability of this work.

4) The Effectiveness of Scoring Optimization Mechanism for
Blockchain Performance: In the previous content, we propose
two learning-based blockchain performance prediction models
and prove that these models have excellent prediction results
through sufficient experiments and analyses. Therefore, this
part demonstrates experimentally that our proposed blockchain
performance scoring optimization mechanism can efficiently
and feasibly accomplish the optimization of blockchain
performance.

We first verify that our proposed blockchain performance
scoring optimization mechanism can find and tune the optimal

TABLE VII
THE OPTIMIZATION RATE OF OPTIMAL BLOCK SIZE ON LATENCY

blockchain parameters to obtain the optimal performance. In
this experiment, instead of using a weight adjustment strategy,
we set the weights manually to fully validate the effectiveness
of our proposed method and to ensure the uniformity of the
experimental parameters.

We choose five block sizes (50, 100, 150, 200, 800) as
control experiments. When we have latency as the primary
optimization goal, we set WeightLat = 1, and WeightThr =
0, the experimental results are shown in Fig. 10 (a). For
the same transaction arrival rate, setting different block sizes
(and other parameters that may affect blockchain performance)
will yield different performances. Compared to setting block
sizes manually, our proposed method can dynamically choose
the optimal block size for different transaction arrival rates,
thus achieving the lowest latency. For example, when the
transaction arrival rate is 30 TPS, the lowest latency can
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Fig. 10. The performance of scoring optimization mechanism. (a) Latency as the primary optimization goal (WeightLat = 1, WeightThr = 0)
(b) Throughput as the primary optimization goal (WeightLat = 0, WeightThr = 1).

TABLE VIII
THE OPTIMIZATION RATE OF OPTIMAL BLOCK SIZE ON THROUGHPUT

be obtained by setting the block size to 310; when the
transaction arrival rate is 35 TPS, the block size needs to
be adjusted to 675 to achieve the lowest latency. As shown
in Table VII, our proposed method improves the latency by
about 5%. It is worth noting that our proposed method yields
very significant latency optimization (14.1% and 17.9%,
respectively) when the transaction arrival rate is 65 TPS
and 200 TPS, respectively. When we have throughput as
the primary optimization goal, we set WeightThr = 1,
and WeightLat = 0, the experimental results are shown in
Fig. 10 (b). Compared to setting block size manually, our
proposed method can dynamically choose the optimal block
size for different transaction arrival rates, thus achieving the
highest throughput. For example, when the transaction arrival
rate is 80 TPS, the highest throughput can be obtained by
setting the block size to 750; when the transaction arrival rate
is 85 TPS, the block size needs to be adjusted to 315 to
achieve the highest throughput. As shown in Table VIII, our
proposed method improves the throughput by about 7%. It is
worth noting that our proposed method yields very significant
throughput optimization (16.8% and 26.0%, respectively)
when the transaction arrival rate is 95 TPS and 165 TPS,
respectively. The reason for the above may be that there
is a pronounced difference in performance corresponding
to different block sizes when the transaction arrival rate is
the above value, which may be because there is indeed a
pronounced difference in the actual performance, or it may
be due to the potential bias that arises from the collection
of blockchain performance data by Hyperledger Caliper. This
also illustrates that our proposed method relies on dataset
quality (dataset size, fidelity). Therefore, providing sufficiently
detailed blockchain performance datasets will aid research in
this field.

Fig. 11. The flexibility of our proposed scoring optimization mechanism.

Moreover, we verify that our proposed mechanism has
higher flexibility because our proposed mechanism can
dynamically adjust the weights. we set ThresRatio = 50,
ThresLat = 1, WeightThr

1 = 1, WeightLat1 = 1,
WeightThr

2 = 0.5, and WeightLat2 = 0.5, the experimental
results are shown in Fig. 11. In this experiment, we set the
weights according to the proposed strategies. Firstly, when
Ratio is greater than or equal to ThresRatio , it means that
the benefits of optimizing throughput are much greater than
the benefits of optimizing latency, so we set WeightThr = 1
and WeightLat = 0. When Ratio is less than ThresRatio

and LatMin is less than ThresLat , it means that the bene-
fits of optimizing throughput are not significant, so we set
WeightThr = 0 and WeightLat = 1, we take latency as
the main optimization orientation. We choose the BPC corre-
sponding to LatMin as the optimal blockchain performance
parameters configuration.

In the scoring optimization method proposed in [26], the
settings of WeightLat and WeightThr are inflexible, and they
are not adjusted based on the judgment of specific situations,
but our proposed method has higher flexibility and can be
judged based on pre-set situations (from the perspective of
latency thresholds or the benefits of performance tuning), thus
flexibly adjusting the setting of weights. This also proves that
our proposed blockchain performance scoring optimization
approach has better scalability and flexibility, and is more suit-
able for blockchain performance tuning in different practical
scenarios.
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TABLE IX
THE COMPARISON WITH RELATED WORK

Fig. 12. The performance optimization effect of LearningChain and [23].

C. Significance and Comparison

To fully demonstrate the innovation and effectiveness of
LearningChain, we compare it with four related works. For
convenience, we qualitatively compare LearningChain with
related work (traditional optimization algorithms and machine
learning-based optimization) in terms of eight characteristics.
The qualitative comparison results are shown in Table IX.
First, in previous experiments, we demonstrate in full com-
parison with [26] that LearningChain has higher predictive
performance, scalability, and optimization flexibility and that
it can be applied to the case of a few sample data.

In addition, to further demonstrate the performance and
innovativeness of LearningChain, we compare it quantitatively
with [23]. To ensure the fairness of the comparison as much
as possible, we choose the result in [23] (Hyperledger Fabric
1.4.1, Hyperledger Caliper 2.0.0, two organizations, two peers,
one client) that is closest to the experimental setting of
LearningChain. Since blockchain performance is affected by
the performance of computing devices, there will be some
differences in blockchain performance in different experimen-
tal environments. For this reason, we mainly compare the
respective baselines (block sizes are 100 and 200, in [23] and
LearningChain, respectively) with the optimized performance.
The comparison results are shown in Fig. 12, both methods
achieve optimization of blockchain performance, but when
the transaction arrival rate is small (25 to 125 TPS), the

optimization effect of [23] is not obvious compared to its
baseline. In contrast, our proposed method achieves more sig-
nificant optimization results most of the time, especially when
the transaction arrival rate is small. In [23], the blockchain
performance optimization is mainly done by intelligently
controlling the transaction arrival rate, while in LearningChain,
the dynamic blockchain performance optimization is mainly
done by adjusting the blockchain parameters (e.g., block
size). Therefore, the two optimization methods do not conflict
and can be effectively integrated to further optimize the
performance of the blockchain. The comparison with related
work effectively demonstrates the innovation, effectiveness,
and scalable of LearningChain.

D. Discussion, Analysis, and Limitations

Maintainers and users of different blockchain platforms
only need to collect a certain number of performance
datasets to use LearningChain for blockchain performance
optimization. Therefore, LearningChain is not limited to a
specific blockchain platform. LearningChain is easy to under-
stand and does not require much of a technical threshold. In
addition, LearningChain can be integrated and complemented
with other existing optimization methods (e.g., improvement
of consensus algorithms, blockchain sharding, etc.) to further
improve the effectiveness of optimization. For the consensus-
based performance optimization method, Zhang et al. [19]
proposed the election of representative nodes to complete the
packing and confirmation of blocks, which reduces the number
of master nodes, thus reducing the block broadcasting time
and optimizing the performance of the blockchain. When the
number of representative nodes is at a small scale, our method
can quickly complete the block size adjustment on this basis,
thus further optimizing the blockchain performance. As for
the sharding-based performance optimization method, for a
transaction, since it can be verified and confirmed by only a
small portion of the nodes in the blockchain network [21],
the block size can also be adjusted quickly for this portion
of the nodes due to the limited number of nodes, thus further
optimizing the blockchain performance.

Since the larger the block size (the longer the block
broadcast time), the probability of forking rises once a large
number of transactions occur when the nodes in the blockchain
network have a poor network environment. Therefore, in this
paper, the main scenario we are oriented to is the consortium
blockchain with a limited number of main nodes and more
trustworthy, for example, Ethereum (adopts the delegated
proof of stake consensus mechanism), and Hyperledger Fabric
(adopts the Raft consensus mechanism). Since the number of
nodes is limited and nodes tend to be served by computation-
ally powerful devices, the overhead of completing a blockchain
parameter adjustment is relatively small.

For public blockchain, especially Bitcoin, which adopts the
proof of work consensus mechanism, due to the presence
of a large number of mining (master) nodes with different
computational capabilities and network bandwidths, frequent
blockchain parameter adjustments may cause the blockchain
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network to fork, resulting in anomalies in the ledger main-
tained by individual nodes. In addition, due to the maintenance
of a large number of high-value cryptocurrencies, there may
be cases of malicious nodes doing evil. As a result, frequent
resizing of blocks (especially increasing the block size) may
expose the blockchain to the risk of forking, which can lead
to security problems. Therefore, our current proposed method
may not be suitable for public blockchain platforms with many
nodes widely distributed worldwide.

In realistic scenarios, we will minimize the impact
of blockchain configuration adjustment on the blockchain
network by controlling the time of block size adjustment
(i.e., the frequency of adjustment) and limiting the range of
adjustable parameters (e.g., block size up to 800), to keep the
blockchain running stably.

V. CONCLUSION

In this paper, to further improve the accuracy and
efficiency of blockchain performance optimization, we pro-
pose a blockchain performance optimization framework
(LearningChain). We use TCN to predict the transaction arrival
rate for a certain period in the future and use it as a subsequent
input. We propose an ensemble learning-based method and a
meta-learning-based method to train a blockchain performance
prediction model, respectively. These two methods are each
applicable to different data sample sizes. On this basis, we
design a performance scoring mechanism to dynamically
optimize the configuration parameters of the blockchain to
improve the blockchain performance. In addition, we collect
and contribute a blockchain performance dataset for other
researchers to research. The adequate experimental results and
analysis, as well as qualitative and quantitative comparisons
with related work, demonstrate the validity and feasibility of
our proposed method. Our proposed method applies not only
to Hyperledger Fabric but also to other blockchain platforms
with a similar nature.

In future work, we will study the parameters affecting
blockchain performance more deeply, further find the relation-
ship between them, and apply them to some suitable scenarios
to solve some urgent problems. In any case, the work still
has some shortcomings that can be further investigated in the
future, including but not limited to, reducing the load and cost
caused by blockchain parameter tuning, specific performance
optimization schemes for public blockchains with a large
number of nodes, and more efficient and accurate performance
optimization mechanisms and models.
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