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A B S T R A C T

Urban walkability is a critical aspect of urban planning. Since the traditional measurement methods constrained
by cost, time, and scalability researchers have turned to computer-assisted audits based on Panoramic
Street View Images (PSVIs). However overlook image distortion and data annotation issues, impacting
predictive accuracy. Current evaluations often lack a holistic approach, making comparison challenging.
In response, a multidimensional evaluation approach is proposed through three indices: street red quality,
physical walkability, and perceived walkability. To enhance accuracy, a Transformer-based Doubly Deformable
Panoramic semantic segmentation Network (TDDPassNet) is introduced to calculate key metrics informing
ecological quality and spatial layout evaluations. An unsupervised domain adaptation method is proposed for
insufficient labeled data. Furthermore, a Geographic Information System (GIS) analysis was conducted to assess
the physical walkability index. Human–machine adversarial technology and a random forest model evaluate the
perceived walkability index. A comprehensive evaluation framework is presented using the Analytic Hierarchy
Process to assign weights to assessment indices across the three dimensions. A case study was conducted in
Lijiang City, China, to demonstrate the practical application of the methodology. Extensive experiments are
conducted, TDDPassNet exhibits an average increase of 5.3% in mIoU across diverse datasets compared to
the prevailing models. This study evaluated 47,758 sampling sites, providing insights into urban planning and
development in similar contexts
1. Introduction

Accelerating urbanization has led to increased car ownership, result-
ing in smaller walkable city spaces and a worse ecological environment.
This, in turn, restricts urban walkability, generating traffic congestion
and aggravating environmental pollution. As a result, cities fall into a
vicious circle. Scientific and reasonable adjustment of urban planning
to enhance walkability has become crucial in urban planning and
construction (Scorza et al., 2021). Walking is an eco-friendly mode
of transportation that reduces traffic congestion and environmental
pollution while promoting physical and mental health. Walkable urban
streets and districts can provide a space for residents to socialize, exer-
cise, and engage in daily activities. This can contribute to the economic
and social development of the city (Kim and Woo, 2022). Therefore,
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urban planning and design should measure walkability to develop ap-
propriate urban design and retrofit recommendations. This is important
for promoting urban walkability and urban habitability (Gong et al.,
2018).

Early researchers focused on describing residents’ community life
through their social relationships. Studies on street walkability were
conducted using face-to-face interviews, questionnaires, and ratings
from expert panels. For instance, Ewing et al. (2006) and Ewing and
Handy (2009) measured the street environment and tested for signif-
icant associations with walking habitability. Peiravian et al. (2014)
developed and applied indices such as land use diversity and street
green visibility to calculate the Pedestrian Environment Index (PEI).
The traditional survey-based approaches can capture residents’ opin-
ions regarding street quality, but only for limited areas of interest
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due to their time-consuming nature, small sample sizes, high cost,
and inefficiency. In recent years, computer vision techniques have
enabled large-scale quantitative measurement of Street View Images
(SVIs). This trend has emerged due to the continuous rise of digital
mapping services and the constant updating of crowd-sourced street
view data (Arellana et al., 2020; Wang et al., 2021; Ogawa et al., 2023).

The rapid development of computer technology has facilitated the
integration of deep learning into urban and rural planning and land-
scape architecture analysis. An increasing number of researchers are
utilizing deep learning-based methods for urban planning research.
This includes using techniques such as semantic segmentation and
image classification to analyze street indices and using street images
to understand the relationship between various types of street at-
tributes (Mohanty et al., 2020; Sun et al., 2021b). In street view big
data, panoramic street view images (PSVIs) differ from remote sensing
images. They provide a three-dimensional and rich view of 360◦ urban
scenes from the pedestrians’ point of view to conduct analyses of visual
elements and urban planning (Kim et al., 2022). As a result, a large
number of urban planning studies are currently advancing on this basis.
For different analysis indices based on PSVIs data, which are processed
using computer vision, e.g., Tang et al. (2022) and Zhao et al. (2023).
However, panoramic images often have significant image distortions
and object deformations due to the inherent equirectangular projec-
tion (Sun et al., 2021a). As a result, traditional convolutional neural
networks and learning methods may not be the best solution for pro-
cessing panoramic images. In addition to the deformation of panoramic
images, the lack of labeled data is another significant challenge that
hinders the progress of visual processing of panoramic images (Yang
et al., 2021b). Most researchers in this field currently use traditional
pinhole image-oriented models, such as SegNet (Badrinarayanan et al.,
2017), UNet (Ronneberger et al., 2015), PspNet (Zhao et al., 2017),
VPLR (Zhu et al., 2019) and DeepLabV3+ (Chen et al., 2018), which are
challenging to handle severe image distortions and are not trained with
labeled panoramic image datasets. The models’ weak feature extraction
capability and the lack of relevant datasets for feature training may
reduce their ability to predict the semantic segmentation of images.
This, in turn, affects the reliability of subsequent urban studies’ results.

A quantitative analysis of only some features of streetscape images
is insufficient to fully represent urban walkability. A comprehensive
assessment from multiple dimensions is necessary. Zhou et al. (2019)
did not consider people’s walking needs at the physical and perceptual
levels. They measured the quality of the street visual environment
solely in terms of greenery, visual congestion, outdoor fencing, and
visual pavement width. Horak et al. (2022) assessed the walkability
of urban physical spaces using an approach based on accessibility by
calculating neighborhood environment indices, excluding subjective
evaluations. Meanwhile, Koohsari et al. (2021) investigated the link
between walking perception scores and built environment attributes
but did not conduct actual neighborhood physical walking index mea-
surements. The methods mentioned above have one-sided metrics and a
single assessment model. However, methods for measuring urban walk-
ability require more comprehensive assessment criteria and systematic
assessment processes.

To solve the above problems, this paper presents a framework
for assessing urban walkability from a comprehensive urban planning
perspective. The framework has three dimensions: street ecological
quality, physical walkability, and perceived walkability. The ecological
quality of the street, such as green coverage and sky view factor, is
assessed to reflect the ecological condition of the city street. To address
the pivotal distortion issue in panoramic image data, a Transformer-
based (Vaswani et al., 2017) Doubly Deformable Panoramic semantic
segmentation Network (TDDPassNet) is proposed. To address the is-
sue of limited sample data, the panoramic data is annotated using
an unsupervised multi-stage prototypical domain adaptation method.
Subsequently, variables such as walking paths, point of interest (POI)
2

facilities, and essential urban land use classification (EULUC) data are
analyzed and computed using walkability analysis to reflect the actual
physical walkability of city streets. Then, Human–machine adversar-
ial technology is employed to collect perceptual data on the urban
walking environment. The four-dimensional perceptual scores of Safety,
Convenience, Comfort, and Attractiveness of different streets in the
city are analyzed to assess the perceived walkability of the city and
reflect pedestrians’ subjective feelings towards the urban walking en-
vironment. Finally, the city’s Comprehensive Walkability Index (CWI)
is calculated. This paper’s primary contributions can be summarized as
follows:

1. From urban planning perspective, a three-dimensional urban
walkability framework is proposed to measure the Comprehen-
sive Walkability Index (CWI) for cities. The framework inte-
grates multiple data sources, including PSVIs, POI, and EULUC,
and uses techniques such as semantic segmentation, GIS, and
human–computer adversarial for analysis. By combining the
street ecological quality index, physical walkability index, and
perceived walkability index into a single metric, the CWI pro-
vides a more comprehensive evaluation of walkability, address-
ing the limitation of partial evaluation from a single perspective
prevalent in previous studies.

2. In the field of urban walkability research, the consideration of
image distortion and object deformation in panoramic image
data is addressed for the first time. A transformer-based Dual De-
formable Panoramic semantic segmentation Network (TDDPass-
Net) is proposed. TDDPassNet incorporates a broad perspec-
tive, handles panoramic-specific semantic distributions in its
design, and perceives image distortion through deformable MLP
modules, multi-scale strategies, and dual attention mechanisms.

3. A novel unsupervised domain-adaptive method for
self-annotation of panoramic images is developed to address the
paucity of labeled data in the urban planning domain. The
method is applied to the construction and opening of a total of
47,758 panoramic image datasets.1

4. The spatial distribution analysis of different indicators is per-
formed, and the walkability of the ancient city area is visually
analyzed through spatial distribution maps. A series of compar-
ison and ablation experiments for the models and methods, as
well as a more comprehensive qualitative analysis, are carried
out. The experimental results demonstrate that TDDPassNet has
the best performance compared to all other models, with an
average increase of 5.3% in mIoU across different datasets.

The abbreviations of the most frequently utilized definitions in
the article are presented in Table 1, accompanied by their complete
nomenclature. The remainder of the study is organized as follows:
Section 2 discusses related work in the field of urban walkability. The
detailed methodology is presented in Section 3. Section 4 describes the
experimental setup and analyses the results. A discussion of the study’s
outlook is presented in Section 5. Finally, Section 6 summarizes the
work presented in the article.

2. Related work

2.1. Definition and approach to urban walkability

Walkability refers to the extent to which a street’s environment
is pedestrian-friendly (Guzman et al., 2022). It is a complex concept
influenced by multiple variables and is challenging to quantify simply
and specifically. Although there is no consensus on the measure of
walkability, several studies have attempted to assess walkability from
different aspects quantitatively. Earlier studies usually judged the walk-
ability of urban streets from a single perspective only. For example,

1 LjPass Dataset:https://github.com/Qingkongmu/LjPass.
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Table 1
List of Abbreviations.
Abbreviation Full name

PSVIs Panoramic Street View Images
TDDPassNet Transformer-based Doubly Deformable Panoramic Semantic Segmentation Network
PoI Point of Interest
EUCUL Urban Essential Land Use Categories
GIS Geographic Information System
CWI Comprehensive Walkability Index
mIoU Mean Intersection over Union
RF Random Forest
Cerin et al. (2007) focused on factors such as the reasonable time
and cost required to reach various destinations, primarily considering
the physical accessibility of walkable spaces while overlooking the
ecological and perceptual dimensions. Ewing and Handy (2009) sought
to gauge the subjective quality of urban street environments through
ratings provided by a panel of experts. However, this relies too heavily
on individual perceptual variables, and there is a one-sided evaluation
of the walking environment.

Researchers have started exploring multiple dimensions to measure
walkability to avoid the limitations of studies from a single perspec-
tive. Gebel et al. (2009) used a community questionnaire to consider
elements of pedestrians’ perceptions of walkable streets, considering
various variables in the walking environment. However, their small
and costly study area still has significant limitations. Another approach
involves using user voting on browser platforms to select visually ap-
pealing, environmentally friendly, and physically and mentally pleasing
streetscape data (Quercia et al., 2014). While this method has advan-
tages regarding the ecological environment and sensory experience, it
requires significant manual labeling, increasing time and labor costs.
Tsiompras and Photis (2017) assessed the built environment features
that influenced people’s travel behavior and geo-visualization through
a comprehensive walkability index approach based on weighted GIS.
Although this approach has better human and time costs, the focus
is limited to the environmental quality of the street and the actual
walking index. It does not consider the pedestrian’s needs for the
walking environment at the visual perception level. The application
of artificial intelligence to urban research has become increasingly
common due to the recent emergence of deep learning techniques and
the constant updating of crowdsourced map data.

In the domain of deep learning techniques for auditing urban walk-
ability, Ki and Lee (2021) explored the correlation between urban
greenery and pedestrian activities, while Hua et al. (2022) established
a connection between street-level greenery in densely populated urban
areas and the surrounding urban morphological conditions. In addition
to these methodologies, Li et al. (2022b) integrated components of
an image multi-classification module and virtual reality (VR) into the
semantic segmentation model based on SVIs, facilitating evaluations
closely mirroring real-world perceptions. Meanwhile, Li et al. (2023a)
attempted to construct a comprehensive research methodology for
assessing urban street walkability by amalgamating GIS, environmental
sensors, and image semantic segmentation, along with incorporating
various walking-related variables. He and He (2023) recognized the
challenge of accurately gauging safety perceptions in urban walkability.
They employed natural language processing technology to conduct
public opinion analyses of street safety incidents, thereby refining the
assessment model at the perceptual level. Based on the findings of
these studies, the Comprehensive Walkability Index (CWI) is proposed
as a tool for evaluating the walkability of urban streets from various
perspectives in urban planning. The CWI incorporates assessments of
the ecological quality of streets, as well as observations of pedestrian
behavior and perceptions of willingness to walk.

2.2. Panoramic Street Images and image semantic segmentation

The global availability of Panoramic Street View Images (PSVI) has
3

established it as a primary data source for urban studies, particularly in
relation to the impact of the street-level built environment on human
walkability (Biljecki and Ito, 2021). Major mapping services, including
Google Maps, Tencent Maps, and Baidu Maps, provide researchers with
high-resolution and realistic street-level panoramic image data through
their APIs. PSVI offers significant advantages in observing and char-
acterizing the built environment virtually. Compared to field surveys,
it provides a cost-effective and time-efficient way of conducting large-
scale assessments (Farahani et al., 2023). Additionally, PSVI-based
audits demonstrate a high degree of consistency with physical audits,
particularly in the areas of pedestrian infrastructure, traffic safety, and
streetscape aesthetics. The audits exhibit over 80% consistency (Jamei
et al., 2021). Research indicates that virtual audits conducted through
PSVI can significantly reduce labor and time costs compared to field
surveys. According to Bartzokas-Tsiompras et al. (2023), such audits
can save up to 97% of labor costs and 90% of time costs.

Image semantic segmentation techniques are most commonly used
by related researchers in PSVI-based quantitative analysis of cities (Suel
et al., 2021). The process aims to classify image content semantically.
Scene parsing based on semantic segmentation is a core topic in com-
puter vision, with the goal of assigning category labels to each pixel
in an image. This can be seen as an extension of target detection and
a process of categorizing image pixels. The aim is to determine the
category of a pixel from a set of discrete categories (Long et al., 2015).

Urban research scholars typically adopt existing semantic segmen-
tation models for PSVI-based studies related to urban walkability. This
approach is understandable as developing a more robust algorithm
is technically challenging. However, these studies have paid little at-
tention to the limitations of applying semantic segmentation. Recent
studies on walkability that use SVI-based methods are summarized in
Table 2. The year of the article, study area, information about the
semantic segmentation model, the training set, the types of predicted
image data used, and the accuracy of the model are shown in Ta-
ble 2. Accurate extraction of street elements is a valid prerequisite for
measuring walkability in walkability studies. However, the adoption
of existing semantic segmentation models vastly overestimates the
performance of the model. In particular, some of the models’ perfor-
mance has not been validated against a test set. Therefore, models
cannot provide accurate results, and models lacking accuracy validation
have limited contribution to subsequent studies (He and He, 2023).
Additionally, these studies did not compare the performance of models
that effectively identify target street features before model selection.
It is necessary to compare models because they may have varying
accuracies for specific street features, and even the same model may
perform differently with different training datasets.

In particular, when selecting PSVI data for research purposes, the
models chosen by the researchers were originally proposed for planar
pinhole image data. As a result, these models may not be suitable for
dealing with panoramic image data with obvious image distortion and
object deformation problems (Zhao et al., 2023; Yang et al., 2021b).
Furthermore, these models are not trained using panoramic images
with labels as a training set, greatly reducing their performance in
PSVI semantic segmentation prediction. This reduction in performance
will seriously impact the accuracy of subsequent studies (Zhang et al.,
2022). Therefore, developing a common application paradigm in PSVI-
based research related to walkability is crucial, and it should include
model testing, comparison, and selection. Future studies following this

paradigm will have greater contribution and reference value.
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Table 2
Summary of deep learning methods in recent SVI-based research related to walkability.

Article (Year) Study area Model used for semantic segmentation Training set Split image type Accuracy rate

Tang and Long (2019) 2019 Binjiang, China SegNet ADE20K Pinhole Image 82.54%
Nagata et al. (2020) 2020 Tokyo, Japan DeepLab v3+ Cityscapes Pinhole Image 82%
Suel et al. (2021) 2021 London, UK U-Net Not mentioned Panoramic Image Not mentioned
Jiang et al. (2021) 2021 Hong Kong, China PSPNet Cityscapes Pinhole Image Not mentioned
Ki and Lee (2021) 2021 Seoul, South Korea FCN-8 s Cityscapes Panoramic Image 84.56%
Li et al. (2022b) 2022 Osaka, Japan DeepLab v3+ Cityscapes Panoramic Image Not mentioned
Kim and Woo (2022) 2022 Seoul, South Korea HRNetV2-W48 ADE20K Panoramic Image Not mentioned
Li et al. (2023a) 2023 Osaka, Japan DeepLab v3+ Cityscapes Panoramic Image 81.20%
Kang et al. (2023) 2023 Jeonju, South Korea DeepLab v3 ADE20K Panoramic Image 87.50%
He and He (2023) 2023 Shenzhen, China VPLR, DeepLabV3, ResNet Cityscapes, ADE20K Panoramic Image 92%
2.3. Unsupervised domain adaptive approach

Unsupervised learning (UL) has proven valuable in comprehending
the intricacy of cities. Unlike supervised learning methods, UL uncovers
patterns from inherent data structures without the need for manual
labeling, which is believed to be crucial in producing truly AI deci-
sions (Wang and Biljecki, 2022). Supervised learning has proven to be
useful for various applications and datasets. However, it may not be
suitable for addressing all research questions due to challenges such
as obtaining training data. Real-world urban data often lacks labeling
information, as noted by Yang et al. (2021a).

Cities are complex creations with patterns believed to be hidden
in their physical form and daily operations (Anthony, 2023). With
the increasing amount of urban data and the application of machine
learning techniques, it has become possible to identify patterns from
large-scale data automatically. This has gained momentum in provid-
ing researchers with assistance in unraveling the complexity of cities
to inform urban interventions and facilitate data-driven planning (Li
et al., 2023b). Unsupervised Learning (UL) infers patterns from un-
labeled data, unlocking the potential to further understand dynamic
and large-scale data in urban research. In the prevailing trend of
interdisciplinary GeoAI research (Liu and Biljecki, 2022), UL is crucial
for learning the rich semantics of spatial representations and spatial
data infrastructures.

Labeling panoramic images could be a time-consuming and expen-
sive task due to the ultra-wide field of view and distorted elements.
To address this issue, existing Domain Adaptation (DA) methods can
be classified into two main types: Semi-supervised Domain Adaptation
(SDA) and Unsupervised Domain Adaptation (UDA). SDA assumes that
labeled data from the target domain can be used in addition to labeled
data from the source domain to train/adapt the model. In contrast, the
latter does not require labels from the target domain but explores the
similarity between the two in the data distribution. This scheme adapts
the model from the source domain to the target domain, improving
model generalization to unseen domains (Oza et al., 2023). In this
context, UDA is selected as the primary solution for the task.

Unsupervised domain adaptation mainly includes self-training and
adversarial learning. Self-training utilizes unlabeled data in the target
domain to generate pseudo-labels for training by the source domain
model. After iteration, the model then adapts to the target feature
distribution to improve its generalization ability (Zhang et al., 2019; Li
et al., 2022a; Huo et al., 2022). Adversarial learning is a technique that
utilizes Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014). GANs consist of a generator network and a discriminator net-
work. The generator network produces target samples, while the dis-
criminator network distinguishes between the generated and real sam-
ples. Through an iterative process, adversarial relationships are formed
to reduce the difference in the distribution of the source and target
domains, ultimately enhancing the model’s performance (Gallego et al.,
2020; Chang et al., 2019). Both types of methods reshape the feature
space to enable the generalization of classifiers trained on transformed
source data to target data (Kouw and Loog, 2019).

To tackle the issue of insufficient labeled data, it is crucial to explore
4

Unsupervised Domain Adaptation (UDA) by utilizing sub-optimal but
label-rich resources to train panoramic models. This involves adapting
a pinhole image to a target panoramic image (Farahani et al., 2023).
A multi-stage prototype adaptation method is proposed for panoramic
image data, simultaneously considering both approaches mentioned
above. The gap between different domains is bridged by self-learning
to deeply mine different feature spaces under multiple datasets, source
labels in the output space, and pseudo-labels in the target domain.
Meanwhile, adversarial learning is employed to warm up the optimal
model at each stage, facilitating the synthetic transfer of features
between different fields of view.

3. Methodology

This section presents the specific details of the methods employed.
In this article, different symbols and abbreviations are employed to rep-
resent different concepts. Table 3 provides a comprehensive overview
of the symbols and abbreviations, thereby facilitating a clear under-
standing of the symbols used.

3.1. Research framework

This paper presents a framework for measuring cities’ Comprehen-
sive Walkability Index (CWI) from an urban planning perspective. The
framework focuses on three-dimensional urban walkability research.
Walking behavior is influenced by various variables, including the
quality of the street, the distribution of public facilities, and the will-
ingness of the pedestrian to walk. To meet various travel requirements
and simplify path selection, developing a comprehensive framework
to evaluate the feasibility of walking is an effective solution. The
research framework integrates the effects of mesoscale variables, such
as street environment characteristics, and microscale variables, such
as the condition of surrounding facilities Additionally, pedestrians’
perceived willingness to walk is considered, and these variables are
used to obtain a Comprehensive Walkability Index (CWI), which pro-
vides a more scientific and reliable evaluation method. The evaluation
architecture diagram for this study is shown in Fig. 1.

First, city-related data are collected, including road network data
from Open Street Map (OSM), Panoramic Street Image (PSVI) data, and
Point of Interest (PoI) data from the Application Programming Interface
(API) provided by Baidu Maps. Additionally, land use type data of the
study area is collected using the Urban Essential Land Use Categories
(EULUC) data provided by EULUC-China (Gong et al., 2020).

To evaluate the ecological quality of roads, it is necessary to clas-
sify and predict each element type in the panoramic image data. A
panoramic semantic segmentation model with domain adaptive pro-
cessing is proposed to address image distortion and annotation scarcity
in panoramic data. The TDDPassNet model utilizes multiple datasets
for source and target domain adaptation and enhances the model’s
adaptability to the target domain through adversarial training methods.
Through unsupervised domain adaptation, labeled data of panoramic
images of the study area were obtained. The environmental quality
assessment indices of the target streets were also acquired based on

the percentage of different visual elements in the TDDPassNet output.
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Fig. 1. Evaluation Architecture.
Table 3
Symbols and Explanations.
Symbol Explanation

𝜃 Latitude
𝜙 Longitude
𝑓𝑖 Feature mapping
𝑆𝑖 Downsampling step size
𝐶𝑖 The Channel size
𝐼𝑠∕𝑡 Source or target domain datasets, 𝑠 and 𝑡 represent the source domain and target domain, respectively
𝑥(𝑖,𝑗)𝑠∕𝑡 Image 𝑥, 𝑖, 𝑗 represents pixel information, 𝑠 and 𝑡 represent the source and target domains
𝑦𝑠(𝑖,𝑗,𝑛) Source Domain 𝑥𝑠(𝑖,𝑗), The label information for (𝑖, 𝑗) represents category 𝑛
�̂�𝑡(𝑖,𝑗,𝑛) Pseudo label category, target domain 𝑥𝑡(𝑖,𝑗) is predicted as information for category 𝑛
𝑝(𝑖,𝑗,𝑛)𝑠∕𝑡 The probability representation of pixel 𝑥𝑠∕𝑡(𝑖,𝑗) being predicted as the 𝑛th class
𝜌𝑥,𝑦 Pearson correlation coefficient, 𝑋 is a certain perceptual dimension, 𝑌 is a certain visual element
SEQindex Street Ecological Quality Index
PhyWI𝑖 The physical walkability index of the sample point
PerWI𝑖 The Physical walkability index of the sample point
To evaluate the walkability of an area, a human–machine adversar-
ial web application was created using a group decision-making process.
Volunteers completed an online perceptual walkability assessment and
input the data into a random forest model for training. The model
used the proportion of each visual element as a reference variable to
determine the influence of each element on perceptual walkability.
Additionally, the POI and EULUC data were input into ArcGIS to
analyze the spatial accessibility of pedestrians and obtain an objective
physical walkability index.

Finally, the weights of each index are determined using the Analytic
Hierarchy Process (AHP) (Saaty, 1988), and then the street ecological
5

quality index, the perceived walkability index, and the physical walk-
ability index were combined into a Comprehensive Walkability Index
(CWI).

3.2. Data collection and processing

This paper utilizes four types of data: road network data, PSVIs,
POIs, and EULUC.

Open Street Map (OSM) provides road network data, which requires
processing such as rasterization, vectorization, and geo-alignment to
convert latitude and longitude coordinates to the local coordinate
system. This enables subsequent sampling of street points and image
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Table 4
Classification and Number of Facilities at Points of Interest.
Facility classification Place types of Baidu Map API Weight Number

Entertainment KTV, . . . ..., Playground, Cinema 1 517
Traffic Aircraft, . . . ..., Parking Lot, Coach 3 1,323
Estate Villa, . . . ..., dormitory, Industrial Park 1 527
Hospital First-Aid Center, . . . ..., Specialized Hospital 1 720
Attractions Scenic Spot, . . . ..., Memorial Hall, Aquarium 2 404
Auto Charging Station, . . . ..., Auto Repair, Auto Sale 3 1,032
Life services Lotto, . . . ..., Information, Post Office, Agency, Public Toilet 1 2,842
Education Museum, . . . ..., Middle School, Vocational School 1 760
Shop Emporium, Minimart, Supermarket, Mall, Grocery 1 6,783
Sport Stadium, Spa, Natatorium 2 275
Finance ATM, Insure, Investment, Bank 2 281
Hotel Budget Hotel, . . . ..., Starred Hotel 1 5,268
Restaurant Teahouse, . . . ..., Chinese Food 2 5,510
Fig. 2. The essential classification of urban land use in the ancient city.

processing. In our method, the vectorized road network map is sampled
at every 30 m street point, with corresponding parameters such as
pitch and field of view width being set to ensure image acquisition
quality and accuracy. Subsequently, a program is developed to access
the Baidu Street View map application programming interface (API)
and collect the PSVIs with corresponding point of interest (POI) data.
The categorized acquisition of POI data is presented in Table 4. The
essential urban land use classification (EULUC) data for the study area
is obtained from EULUC-China. The land use type of the ancient city of
Lijiang City area from China is depicted in Fig. 2. EULUC-China utilizes
10-megapixel satellite imagery, open street maps, nighttime lighting,
PoIs, and Tencent social big data as input features to provide a new
national urban land use map.

Finally, to ensure the reliability of subsequent urban planning anal-
ysis and deep learning model training, the collected data, including
PSVIs, POIs, and EULUC, are integrated and classified. The data is also
cleaned to remove any invalid data that may have been accessed.

3.3. Street ecological quality evaluation based on panoramic image seman-
tic segmentation models

After the data processing is completed, the PSVIs of the study
area are next fed into our proposed TDDPassNet model (which will
be introduced in the following sections) for semantic segmentation
prediction of the panoramic images. TDDPassNet extracts valuable
information about the 19 visual elements present in each panoramic
6

image, including their respective categories and proportions. In order
to perform the street ecological quality assessment, we first need to
calculate the specifics of variables such as Green View Index, Sky View
Factor, and Relative Road Width. The calculation formula is shown in
(1):

𝑆𝐸𝑄index =
Area 𝑝−𝜆

Area𝑡−𝜆
× 100% (1)

where index represents the calculated index considering three variables
crucial for assessing the ecological quality of streets under panoramic
view, namely the Green View Index (GVI), Sky View Factor (SVF), and
Relative Road Width (RW). Area𝑝−𝜆 denotes the total pixel count of
the indexed element captured in panoramic image 𝜆 at each sampling
point, while Area𝑡−𝜆 signifies the total pixel count in a sampling point
containing 19 elements in the PSVIs. Area𝑝−𝜆 and Area𝑡−𝜆 are intro-
duced and employed to characterize the image at the sampling point.
The resulting values for these three visual element variables require
subsequent weighting to derive the street’s ecological quality index.

3.3.1. Transformer-based doubly deformable panoramic semantic segmen-
tation network (TDDPassNet)

The Transformer model is a deep learning model based on a self-
attention mechanism. It has achieved great success in the field of
natural language processing. Its unique architecture and advantages
have also made it a popular technology in computer vision and urban
planning research. This study presents TDDPassNet, an architecture
based on Transformer (as shown in Fig. 3), which mitigates target
distortion and warping effects in panoramic semantic segmentation. A
feature pyramid structure is added between the encoder and decoder
for multi-scale spatial feature extraction, with three stages of layers
2,4,8, each sampling the image at a different resolution. During the
process of image segmentation, TDDPassNet first patterns the input
image with the shape H×W×D. The image is passed through three
layers of maxpool of different sizes, which are used to construct spatial
feature maps to map features 𝑓𝑖 ∈ (2, 4, 8) for different resolution scales.
Downsampling is then performed for processing steps 𝑆𝑖 ∈ (8, 16, 32)
corresponding to different channel sizes 𝐶𝑖 ∈ (128, 256, 512). In each
scale space, three nested convolutional layers with the same filter size
are used to explore each scale’s depth space feature maps. The multi-
scale feature maps 𝑓𝑖 are first transformed into a uniform shape of
𝐻
𝑓𝑖

× 𝑊
𝑓𝑖

× 𝐷 and then inputted into the decoder. The number of
embedding channels 𝐷 is set to 128. The prediction layers output the
final semantic segmentation results that match the size of the input
image and are based on the number of semantic categories for their
respective tasks.

When predicting panoramic image data, Kim and Woo (2022) con-
sidered the issue of distortion and deformation commonly found in
such images. To mitigate this problem, Kim performed image cropping,
retaining only the main undistorted body part in the center of all
cropped images. This method could effectively extract semantic infor-
mation from the most information-intensive parts of an image, but it
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Fig. 3. Schematic of the architecture of Transformer-based doubly deformable panoramic semantic segmentation network (TDDPassNet).
may result in a lack of information from the edge parts. To address this,
we take a holistic approach by first transforming the 360◦ image data
from a spherical coordinate system to ensure accurate acquisition of
global information and mitigate errors caused by image distortion. The
panoramic image is originally in the coordinate system of latitude 𝜃 ∈
[0, 2𝜋] and longitude 𝜙 ∈

[

− 1
2𝜋 ,

1
2𝜋

]

. Eq. (2) converts it to the Cartesian
coordinate system of 𝑥 and y. The center latitude and longitude are
(

𝜃0, 𝜙0
)

= (0, 0). However, there is also considerable distortion behind
this equirectangular projection. As per the distortion transformation
formula (3) proposed by Lai et al. (2017) for panoramic videos, the
input panoramic image is represented by a set of coordinates (𝜃, 𝜙), and
the model divides the image into k slices,

(

𝜃𝑘, 𝜙𝑘) ,∀𝑘 ∈ [1, 𝑁], where N
represents the number of pixels in the region. Eq. (4) is derived from the
equirectangular projection transformation. It is evident that there is a
strong correlation between the image distortion and 𝑐𝑜𝑠(𝜙). This means
that any pixel position of the image from 𝜙 = 0 could be transformed
with the corresponding distortion.
{

𝑥 =
(

𝜃 − 𝜃0
)

𝑐𝑜𝑠(𝜙0),
𝑦 =

(

𝜙 − 𝜙0
)

,
(2)

(𝜃, 𝜙) =

(

∑𝑁
𝑘=1 𝜃

𝑘

𝑁
,
∑𝑁

𝑘=1 𝜙
𝑘

𝑁

)

=
|

|

|

𝜕𝑥
𝜕𝜃 ⋅ 𝜕𝑥

𝜕𝜙
|

|

|

|

|

|

𝜕𝑦
𝜕𝜃 ⋅ 𝜕𝑦

𝜕𝜙
|

|

|

(3)

(𝑥, 𝑦) =
𝑐𝑜𝑠(𝜙) ||

|

𝑑𝜃
𝑑𝜙

|

|

|

|

|

|

𝑑𝑦
𝑑𝑥

|

|

|

=
𝑐𝑜𝑠(𝜙)
(𝜃, 𝜙)

(4)

where 𝑥 and 𝑦 are the Cartesian coordinates. 𝜃 and 𝜙 are the latitude
and longitude coordinates of the panoramic image.𝑘 is the slice of the
image. 𝑁 is the total number of pixels in the image. 𝑑𝜃

𝑑𝜙 represents the
change in latitude with respect to longitude. 𝑑𝑦

𝑑𝑥 is the derivative of 𝑦
with respect to 𝑥

Using the formulation of the three equations mentioned above, we
incorporate a deformable MLP module (Zhang et al., 2022) onto the
multi-scale feature map 𝑈 ∈ 𝑅

𝐻
𝑓𝑖

×𝑊
𝑓𝑖

×𝐷 extraction. This helps to pre-
serve the object’s shape and spatial layout, resulting in a more accurate
and consistent 2D reference index of the feature map and panoramic
representation. The effect after reprojection is shown in Fig. 4. Unlike
(a) standard Transformer patch extraction, our TDDPassNet (b) could
embed and extract patches along the distortion degree after defor-
mation and, simultaneously, consider the distortion to perform good
panoramic image segmentation.

The feature map 𝑈 ∈ 𝑅
𝐻
𝑓𝑖

×𝑊
𝑓𝑖

×𝐷 consists of three dimensions: width,
height, and channel. Among them, width and height can build spatial
features, while channels represent regional features in space. Obvi-
ously, the spatial position information focusing on key features could
help enhance images’ feature representation in the spatial domain. At
the same time, highlighting channels with relatively rich information
7

Fig. 4. Schematic Diagram of Standard Transformer and TDDPassNet Projection
Transformation and Patch Embedding.

could enhance the meaningful features of each spatial area. Therefore,
the Dual Attention (Woo et al., 2018) mechanism has been introduced
to combine channel attention and spatial attention. This helps to learn
key local features in panoramic images and improve the semantic
segmentation performance of panoramic image scenes. This method is
applied to different scales of spatial feature maps 𝑈 , aiming to enhance
the multi-scale and multi-sensor performance of advanced features in
local semantics.

The fundamental methodology underlying the model could be dis-
cerned in Algorithm 1. The proposed TDDPassNet algorithm exhibits a
computational complexity of 𝑂(𝐻 ×𝑊 × 𝐷 log(𝐷)) in time and 𝑂(𝐻 ×
𝑊 × 𝐷) in space. This complexity is attributed to the transformation,
feature extraction, and attention mechanisms employed for panoramic
semantic segmentation, which are represented by 𝐻 , 𝑊 , and 𝐷, re-
spectively, and account for the height, width, and depth of the input
image.

3.3.2. Multi-stage prototyping method for urban scenes with unsupervised
domain adaptation

A multi-stage prototype method for unsupervised domain adapta-
tion of urban scenes is proposed to address the problem of missing
annotations in PSVIs data (Fig. 5). Our approach involves training
TDDPassNet on different datasets as source domains in multiple stages.
By preserving the optimal prototype of the first stage and mapping it
to the unlabeled Lijiang PSVIs dataset, intermediate domains are added
to improve model performance.

Previous studies commonly use a single-stage, single-prototype
method for the domain adaptation process in image data. However,
those approaches struggle to learn the potential relationship between
the source and target domains and to accurately fit the label require-
ments of the target domain.

To address the lack of complete and sufficient sample size
panoramic image datasets in the field of panoramic image data, the
utilization of SynPass synthetic panoramic image datasets as an in-
termediate domain prototype is proposed. This improves the model’s
ability to accurately identify patterns between pinhole images and
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Algorithm 1 TDDPassNet: Transformer-based Panoramic Semantic
Segmentation
Require: Image: input image with shape 𝐻 ×𝑊 ×𝐷
Ensure: Semantic segmentation results
1: function TDDPassNet(𝐼𝑚𝑎𝑔𝑒)
2: Perform transformation from spherical coordinates to Cartesian

coordinates:
3: if 𝐼𝑚𝑎𝑔𝑒 is panoramic then
4: 𝑥 = (𝜃 − 𝜃0) cos(𝜙0)
5: 𝑦 = 𝜙 − 𝜙0
6: end if
7: Compute coordinates’ mean:
8: 𝑁 ← total number of pixels
9: 𝜃 ←

∑𝑁
𝑘=1 𝜃

𝑘

𝑁

10: 𝜙 ←
∑𝑁

𝑘=1 𝜙
𝑘

𝑁
11: if 𝐼𝑚𝑎𝑔𝑒 is panoramic then
12: Compute distortion correction factor:

13: 𝑥, 𝑦 ←
cos(𝜙)| 𝑑𝜃𝑑𝜙 |

|

𝑑𝑦
𝑑𝑥 |

14: end if
15: Incorporate deformable MLP module onto multi-scale feature

map extraction:
16: 𝑈 ∈ 𝑅

𝐻
𝑓𝑖

×𝑊
𝑓𝑖

×𝐷

17: for 𝑖 ← 1 to 𝐷 do
18: Apply deformable MLP to 𝑈 [∶, ∶, 𝑖]
19: end for
20: Apply Dual Attention mechanism to enhance semantic segmen-

tation:
21: if Panoramic image then
22: Combine channel attention and spatial attention for 𝑈
23: else
24: Apply regular attention mechanism to 𝑈
25: end if
26: return Semantic segmentation results
27: end function

Fig. 5. Demonstration of multi-stage cross-domain adaptation process of unsupervised
domain adaptation.

panoramic images in the source and target domains, ultimately better
fitting the pseudo label to the final target domain.

Inspired by the Domain Antagonism Neural Network (DANN) (Gal-
lego et al., 2020), we classify and label the target data with transformed
labeled source data through representation matching. Our approach
uses confrontation learning to seek a representation that makes dis-
tinguishing differences between different domains when marking sam-
ples impossible, effectively reducing feature differences during cross-
domain migration and improving the model’s generalization ability.

First, Cityscapes (Cordts et al., 2016) pinhole image dataset and its
tag image 𝐼𝑠 =

{

(𝑥𝑠, 𝑦𝑠) ∣ 𝑥𝑠 ∈ R𝐻×𝑊 ×3, 𝑦𝑠 ∈ 0, 1𝐻×𝑊 ×𝑛} are used as the
source domain. where 𝑥𝑠 represents the input images and 𝑦𝑠 symbol-
izes the corresponding segmentation masks with 𝑛 classes. The target
domain is SynPass (Zhang et al., 2022) composite panoramic image
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dataset 𝐼 𝑡 =
{(

𝑥𝑡
)

∣ 𝑥𝑡 ∈ R𝐻×𝑊 ×3} (the label information of SynPass
dataset is not used at this time). Consistency in shared categories is
aimed to be ensured during model migration, assuming that the two
datasets contain the same 𝑛 categories. Our approach aims to adapt
the model from the source domain 𝐼𝑠, which includes labeled data,
to the target domain 𝐼 𝑡, which lacks label information for its images,
while maintaining consistency across 𝑛 shared classes between the two
domains. To achieve this, we employ a panoramic segmentation loss
function, denoted as Eq. (5), which is used to fit the training model in
the source 𝐼𝑠 domain:

𝐿𝑠
𝑝𝑠

(

𝑦𝑠(𝑖,𝑗,𝑛), 𝑝
𝑠
(

𝑦𝑠(𝑖,𝑗,𝑛) ∣ 𝑥
𝑠
(𝑖,𝑗)

))

= −
𝐻,𝑊 ,𝑛
∑

𝑖,𝑗,𝑛=1
𝑦𝑠(𝑖,𝑗,𝑛)𝑙𝑜𝑔

(

𝑝𝑠(𝑖,𝑗,𝑛)
)

(5)

𝐿𝑡
𝑠𝑡

(

�̂�𝑡(𝑖,𝑗,𝑛), 𝑝
𝑡
(

�̂�𝑡(𝑖,𝑗,𝑛) ∣ 𝑥
𝑡
(𝑖,𝑗)

))

= −
𝐻,𝑊 ,𝑛
∑

𝑖,𝑗,𝑛=1
�̂�𝑡(𝑖,𝑗,𝑛)𝑙𝑜𝑔

(

𝑝𝑡(𝑖,𝑗,𝑛)
)

(6)

where the probability that pixel 𝑥𝑠(𝑖,𝑗) is predicted to be the 𝑛th class is
denoted by 𝑝𝑠(𝑖,𝑗,𝑛). The term 𝑝𝑡

(

�̂�𝑡(𝑖,𝑗,𝑛) ∣ 𝑥
𝑡
(𝑖,𝑗)

)

denotes the probability
of the predicted categories derived from training and validating the
model on the source domain, encompassing the categories predicted as
1 through 𝑛, the height (𝑖-𝐻), and width (𝑗-𝑊 ) of the patch. During the
fitting process, the conventional self-training loss calculation scheme
(6) is utilized to adapt the pre-trained model to the target data. In
this context, the pseudo-label of the target domain pixel, denoted by
�̂�𝑡(𝑖,𝑗,𝑛), is used to represent the predicted label for that pixel 𝑥𝑡(𝑖,𝑗). The
pseudo-label is determined based on the most probable class in the
model prediction, as represented by �̂�𝑡(𝑖,𝑗,𝑛) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑝𝑡(𝑖,𝑗,𝑛).

The results of the preceding stage are utilized as a prototype,
employing the identical objective function calculation to adjust the
original SynPass target domain dataset, which incorporates label infor-
mation, into an intermediate domain. This intermediate stage prototype
is consistent with the categories of Cityscapes, combining the label
category vectors to ensure pseudo-label consistency. Subsequently, the
unlabeled Lijiang panorama dataset is employed as the ultimate target
domain in a multi-stage, multi-scale feature extraction and embedding
procedure to construct the prototype. This approach enhances the
robustness and expressiveness of the final target domain labels.

3.4. Human–machine adversarial technology for perceived walkability eval-
uation

In this study, a scoring framework for perceived walkability based
on the four levels of urban walking perception is constructed. The
four categories are safety, convenience, comfort, and attractiveness.
These four evaluation dimensions were determined by reviewing the
effective impact on pedestrian demand in previous studies (Gebel et al.,
2009; Guzman et al., 2022; Farahani et al., 2023). These four levels
of need represent the key aspects of pedestrian psychological choice
in the walking decision process. The currently widely used evaluation
standards, which are also the unified standard for the subsequent
recruitment of volunteers to score the human–machine adversarial, are
integrated by Fig. 6.

The evaluation criteria for the four dimensions of perceived walk-
ability are shown by Fig. 6. Safety is a fundamental need for pedes-
trians, referring to the perceived threat of traffic accidents and crime.
Measures such as modifying pavement morphology, controlling land
development, and improving infrastructure integrity could enhance
pedestrian safety. Convenience is also crucial for pedestrians when
choosing destinations and planning routes, and it is closely related to
land use type and infrastructure diversity. Urban street design should
prioritize creating a comfortable walking environment and addressing
pedestrians’ concerns. Pedestrian comfort is expressed through their
satisfaction with the street environment, including elements such as
greenery, cleanliness, and unobstructed views of the sky. Attractiveness
is also important for pedestrians to find the street environment pleasant
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Fig. 6. Evaluation Criteria for Perceived Walkbility.

and appealing, including clear directional signage, abundant public
spaces, and various commercial facilities. Optimizing these aspects
could enhance the appeal and functionality of the street environment.

To assess urban walkability perception in our study area, we de-
veloped a web application2 for online assessment, data collection,
and model training, leveraging the concept of group decision-making.
This application was used by volunteers familiar with the region’s
socio-economic context or possessing knowledge in urban street design
research within a human–machine adversarial scoring framework.

The working mechanism of evaluating perceived walkability is illus-
trated in Fig. 7. We enlisted 40 volunteers to rate the walkability per-
ception of city streets, standardizing their evaluation criteria through
initial training to minimize discrepancies in their assessments. The
criteria were made readily accessible within the application interface
to guide volunteers during their evaluations. The assessment involved
rating images from the PSVIs dataset of Lijiang City’s ancient area,
displayed randomly to each volunteer on a scale from 0 to 100 across
four walkability criteria.

Our framework incorporates a Random Forest (RF) model to cor-
relate visual elements in images with user ratings. This is achieved
by using feature vectors obtained through semantic segmentation via
our TDDPassNet. The system then uses the ratings from the first 50
images to refine the RF model, predicting subsequent images’ scores.
The model is recalibrated if there are discrepancies between predicted
and volunteer scores exceeding 10 points across more than five images.

Images rated multiple times are assigned a median score to ensure
reliability. The RF model uses two-thirds of its samples for training
and one-third for out-of-bag error assessment. A successful human-
machine compromise is reached when the difference between predicted
and actual scores stays within ±5 points without exceeding a 10-point
discrepancy in five consecutive ratings. Upon achieving an out-of-bag
verification error below 5 points after evaluating 500–1000 images,
the process concludes, generating the final perceived walkability index
results.

𝜌𝑥,𝑦 =
𝐶𝑜𝑣 (𝑋, 𝑌 )

𝜎𝑥𝜎𝑦
=

∑𝑛
𝑖=1

(

𝑥𝑖 − 𝜇𝑥
) (

𝑦𝑖 − 𝜇𝑦
)

(𝑛 − 1) 𝜎𝑥𝜎𝑦
(7)

where 𝐶𝑜𝑣 (𝑋, 𝑌 ) represents the covariance between variables 𝑥 and
, and 𝜎𝑥 and 𝜎𝑦 represent the standard deviation of variables 𝑥 and
, respectively, Eq. (7) defines the correlation coefficient between two

2 Human–Machine Adversarial Web Application: https://github.com/
ingkongmu/Human-machine-adversarial-aid-evaluation.
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v

variables, 𝑥 and 𝑦. This coefficient is calculated using the Pearson corre-
lation coefficient formula, which is obtained by dividing the covariance
between 𝑥 and 𝑦 by the product of their standard deviations. To analyze
he correlation between the effects of the four perceptual dimensions
nd the 19 visual elements on evaluation results, we extracted the
arameters of the RF model. This calculation allows for an objective in-
erpretation of the correlation between specific perceptual dimensions
nd visual elements in the street environment, aiding urban planners
nd designers in making more informed improvements at a detailed
evel.

.5. GIS-based physical walkability evaluation

The Common Walk Score system (Carr et al., 2011) is a free,
ublic, web-based tool for measuring local walkability available in
he United States, Canada, Australia, and New Zealand. Walk Score
s scored based on the accessibility of various POI facilities at each
ddress (Horak et al., 2022). If these facilities are within 400 m, they
eceive a full score, which decreases as the distance increases until
acilities within 2000 m no longer count towards the score. On this
asis, the score is calculated based on the network distance from the
ddress to the destination and the facility’s weight. Each facility has a
ifferent weight, and the number of facilities taken into account varies
see Table 4). The weights and number of facilities were determined
ased on previous walkability studies. The weights of each facility were
hen divided, and a weighted sum was applied to them to obtain a
tandardized score ranging from 0 to 100.

In this study, physical walkability is analyzed using the weight
alues of POI facilities as independent variables, considering the effect
f EULUC on walkability in different regions. First, a GIS network
ataset was constructed from POI data, OSM road network data and
ULUC data, and based on the facility classification validated by Kim
nd Jin (2023), the classification of POI facility data. As a result, each
acility in Table 4 has slightly different facility accessibility values and
eights. We then calculate the number of facility types within walking
istance of 400/800/1200/1600 and 2000 m from each sampling point
n the road. At the same time, referring to Horak et al. (2022), different
ULUCs, as well as road network data types, are assigned gradually
ecreasing distance attenuation coefficients for different walking dis-
ances to measure the walking speed and walkability of each sampling
oint to the POI facilities within the different site types. Finally, a
hysical walking index for each sample point is obtained by multiplying
he corresponding distance attenuation factors and overlapping the
eights.

ℎ𝑦𝑊 𝐼 𝑖 =
𝑛
∑

𝑖,𝑗=1
𝑁𝑖𝑗𝑊𝑗𝑓 (𝑑) 𝑙 (𝑘) (8)

here 𝑃ℎ𝑦𝑊 𝐼 𝑖 is the physical walkability index of the sample point, 𝑖 is
he type of classified facilities, 𝑁𝑖𝑗 is the number of facilities, 𝑊𝑗 is the
eight of class 𝑗 facilities, |𝑑| is the distance between the facilities and

he sample point, and 𝑓 (𝑑) is the corresponding distance attenuation
oefficient. 𝑙 (𝑘) refers to the impact of land use type 𝑘 on the walking
core of sampling point 𝑖.

.6. Comprehensive Walkability Index (CWI) evaluation

To calculate the Comprehensive Walkability Index (CWI), the results
f multiple indices and variables are first normalized to 1–10. Then,
n AHP approach is used to calculate weightings for each indicator by
sing pairwise comparison through a questionnaire. The Consistency
atio (CR) in AHP serves as an indicator for evaluating the consistency
f judgment matrices, and it is calculated by comparing the obtained
onsistency Index (CI) with a Random Index (RI). If the computed CR

alue is less than or equal to 0.1, it indicates that the judgment matrices

https://github.com/Qingkongmu/Human-machine-adversarial-aid-evaluation
https://github.com/Qingkongmu/Human-machine-adversarial-aid-evaluation
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Fig. 7. Perceived Walkability Evaluation Framework Based on Human–Machine Adversarial Techniques.
pass the consistency test; otherwise, subjective judgments need to be
modified.
𝐶𝑊 𝐼 = 𝑤𝑎𝑆𝐸𝑄index +𝑤𝑏𝑃ℎ𝑦𝑊 𝐼 +𝑤𝑐𝑃𝑒𝑟𝑊 𝐼

= 𝑤1𝑥1 +𝑤2𝑥2 +⋯ +𝑤𝑛𝑥𝑛
(9)

where 𝑥 represents the detailed influencing variable in each dimension,
𝑤 represents the weight corresponding to the variable determined using
Analytic Hierarchy Process (AHP), and 𝑛 represents the total number of
influencing variables, Eq. (9) defines the Comprehensive Walkability
Index (CWI). This index is calculated by summing the weighted in-
fluencing index of the three dimensions: the Street Ecological Quality
Index (𝑆𝐸𝑄index), the Physical Walkability Index (𝑃ℎ𝑦𝑊 𝐼), and the
Perceived Walkability Index (𝑃𝑒𝑟𝑊 𝐼). Each dimension may encompass
multiple variables affecting it. The results of each streetscape sampling
point in the study area were input into ArcGIS for visualization and
analysis.

4. Experiment

Our method was applied to conduct experiments in the ancient
city of Lijiang, China. Section 4.1 provides a basic description of
the study area; Section 4.2 presents the results and analysis of CWI.
In Section 4.3, experiments on the proposed TDDPassNet model are
conducted. Section 4.4 verifies the effectiveness of the proposed do-
main adaptation method. Finally, Section 4.5 explores the relationship
between the perception dimension and the visual elements in the street
building environment.

4.1. Study area

The paper focuses on the ancient city of Lijiang City area, Yunnan
Province, China, known for its history and scenery. On the left side, the
administrative location of Lijiang in China is displayed by Fig. 8, while
on the right side, the layout and basic distribution of land use in the
ancient city are shown.

In recent years, the government of the ancient city district has
focused on developing the tourism industry and building an ecological
civilization city based on its geographical conditions (Gao et al., 2020).
A series of urban renovations and upgrades have been carried out to
improve street infrastructure, enhance environmental functions, and
optimize the cityscape. The improvement of the walkability index of the
10
ancient city could enhance the well-being and habitability of residents
and tourists. Furthermore, the region has ample PSVI data, which could
increase the reliability of our findings, making it a suitable target city
for our study.

4.2. Comprehensive Walkability Index (CWI) results and analysis

A questionnaire was administered to 40 volunteers who were fa-
miliar with the historical and cultural background of the study area or
had experience in urban planning research. The questionnaire provided
a detailed description of each variable and asked respondents to score
and compare all variables under the three indices dimensions: Green
View Index (GVI), Sky View Factor (SVF), Relative Road Width (RRW),
Physical Walking Index (PhyWI), safety, convenience, comfort, and
attractiveness. Respondents were asked to rate each variable on a scale
of 1 to 10 to generate the final score matrix. The geometric average
of 40 matrices is taken as a summary matrix, and AHP analysis is
performed. The resulting variable weight results are shown in Table 5.
It is important to note that the model passed the consistency judgment
(Consistency Ratio (CR) = 0.0264< 0.1), indicating that the weight
obtained is reliable.

4.2.1. Results of the three-dimensional study area Walkability index
The results of various influential variables in the study area are

depicted in Fig. 9. The sampling points of the streets are marked with
three different colors to indicate their respective scores. The Street
Ecological Quality Index (𝑆𝐸𝑄index) is obtained by segmenting PSVIs
of the study area through the TDDPassNet. This index includes GVI
(Green View Index), SVF (Sky View Factor), and RRW (Roadway Ratio
Weighted). The Fig. 9 shows that the vegetation coverage in the outer
ring area of the ancient city of Lijiang City area is not higher than
that in the city center area from the pedestrians’ point of view. This
is because the surrounding areas 1⃝, 2⃝, 3⃝ are mainly mountainous
and Gobi terrain. Sporadic areas with a HIGH rating are located in the
central section 4⃝, indicating that the degree of urban greenery in this
area needs further enhancement. The distribution of high-grade areas
for SVF and RRW is mainly concentrated in the periphery 1⃝, 2⃝, 3⃝,
while low-grade areas are primarily located in the city center 4⃝. This
may be due to the high density of buildings obstructing pedestrian
sightlines in the city center, while the outer ring consists mostly of
road lots. Although these roads are wider and have better sightlines,
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Fig. 8. Schematic Diagram of Study Area.
Table 5
Weights and consistency evaluation results of the CWI using AHP. (𝜆max = 4.0708, CI = 0.0349, RI = 1.32, CR = 0.0264).

Indices Street Ecological Quality Index Physical Walkability Index Perceived Walkability Index

Variable GVI SVF RRW PhyWI Safety Convenience Comfort Attractiveness
Weight 0.1086 0.1937 0.0904 0.2540 0.0902 0.0836 0.0640 0.1155
they may not be suitable for walking. Based on the results of the AHP
analysis and subsequent walkability assessment, it can be concluded
that higher scores on certain variables do not necessarily have a greater
impact on pedestrian travel.

The Physical Walkability Index (PhyWI) indicates that higher scores
are typically found in areas with better topography and a concentration
of businesses 1⃝. These areas often contain parks, hospitals, stadiums,
and various food and drink facilities, suggesting that streets near large
public services have better physical value. These areas generally have
better location and spatial quality and are home to relatively high
densities of people who prioritize the physical walkability of the street.
Lower scoring areas are concentrated in the periphery of the city 2⃝, 3⃝,
4⃝ and share common characteristics of complex road network patterns

and low accessibility. The government could increase the deployment
and construction of various amenities in lower-scoring areas.

The Perceived Walkability Index (PerWI) showed high subjectivity
ratings for pedestrians when using the human–machine adversarial
technique. Streets with higher scores for Safety and Comfort are mainly
concentrated in the Midwest 1⃝ and 2⃝, with scattered locations in the
North 3⃝. High perception scores for the Convenience and Attractive-
ness dimensions are concentrated in the South Central region 1⃝ and
2⃝, and dispersed in the East 3⃝ and North 4⃝ regions. Considering the

characteristics of the streets, it can be inferred that areas with high
Safety scores generally have low traffic and good transport facilities.
Similarly, areas with high Comfort scores feature landscape elements
that enhance the vibrancy of the space and create a pleasant atmo-
sphere. Finally, streets with high Convenience scores tend to have a
relatively large number of buildings, pedestrian amenities, and walka-
ble environments. Areas with high attractiveness often contain scenic
views, upscale buildings, or landscapes, while low-score areas have
featureless landscapes and homogeneous street compositions. Identify-
ing different types of perceptions can provide valuable information for
targeted urban planning and pedestrian space improvements.

4.2.2. Comprehensive Walkability Index (CWI) results for the study area
The results of the spatial distribution map of CWI obtained after

weighted calculation are shown in Fig. 10. The mean CWI score for
11
the study area was 62.229, with a standard deviation of 12.738. The
CWI was classified into low, middle, and high grades using the natural
discontinuity grading method. The rating results indicate that 33.99%
of the sampling sites were rated as low, while 44.02% and 21.98%
of the sampling sites were rated as middle and high, respectively. To
elaborate on the specifics of the CWI scores, the city center area was
intercepted for the case study, and some examples of the measurements
are provided in Fig. 11. The overall CWI score profile for this area
is excellent (area 1⃝ in Fig. 11). The area could be divided into six
main neighborhoods, and we randomly selected a sampling point in
each neighborhood. A panoramic street image was presented with a
description of the numerical results. The numerical results comprise all
factors that affect walkability and the final results obtained for the CWI.

In residential areas within the urban area, streets with high scores
are mainly shown in Fig. 10, particularly in the main business circles
1⃝ and residential areas 2⃝. The area 1⃝ was selected for the case

measurement experiment and is included in Fig. 11. Streets adjacent
to the traffic trunk line in the east 3⃝ and west 4⃝ with low perceived
walkability scores have low overall CWI scores. The middle 5⃝ and
south 6⃝ areas of the city have a high density of streets, but they also
have good physical accessibility scores. The traffic flow and pedestrian
flow in these areas are relatively balanced, and the CWI comprehensive
evaluation is relatively high. Additionally, in the north 7⃝, where the
building density is low and the ecological quality score of the street
is average, the CWI of the entire street is mostly medium. When im-
plementing pedestrian-friendly infrastructure, the government should
consider the spatial distribution of the CWI scores and take appropriate
measures for different street situations. This will enhance pedestrian
facilities in lower-score areas and encourage local residents to walk,
ultimately improving the city’s overall livability.

4.3. Comparison of Panoramic Semantic Segmentation Models

Existing studies on urban walkability based on SVIs have been
found to utilize traditional models for pinhole images without proper
model selection, as demonstrated by Table 2. Additionally, Section 2.2
mentions research programs that use undisclosed indicators in their
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Fig. 9. Spatial distribution of the results of the Street Ecological Quality Index (GVI,
SVF, RRW), the Physical Walkability Index (PhyWI), and the Perceived Walkability
Index (Safety, Convenience, Comfort, Attractiveness), zoomed in to obtain a better
view.

models. In particular, in the PSVIs walkability study, the chosen models
were not trained on panoramic image data and ignored the image
and object distortions present in panoramic images. A decrease in the
predictive ability of the models used can seriously affect the accuracy
of the results of urban-related studies. To ensure credibility, following a
general application paradigm that includes model testing, comparison,
and selection is necessary.

4.3.1. Experimental setup for modeling methods
All algorithmic modeling was conducted on a single server, utilizing

an NVIDIA GeForce RTX 3090 and an Intel(R) Xeon(R) Gold 6226R
12
Fig. 10. Spatial distribution of Comprehensive Walkability Index (CWI) results.

Fig. 11. Results of panoramic street images with metrics data with random sampling
conducted in the city center area.

CPU @ 2.90 GHz. During training, a single GPU was used, with the
epoch set to 200 rounds and the initial learning rate set to 5e-5. A
cosine decay schedule was employed, incorporating a warm-up period
of 5 epochs. The AdamW optimizer (Loshchilov and Hutter, 2017) was
utilized, featuring a weight decay rate of 1e-4 and a batch size of 4 on
the GPU. For image preprocessing, random adjustments ranging from
0.5–2.0, random horizontal flipping, and random cropping to 512 × 512
were employed.

Three main metrics are employed to compare model performance
in extracting visual elements and to evaluate the accuracy of element
classification results. (1) Mean Intersection over Union (mIoU) is the
most commonly used evaluation metric in semantic segmentation. It
measures the accuracy of the pixel positions of the visual elements. (2)
Pixel Accuracy (pixAcc) calculates the accuracy of the exact matching
ratio between predicted pixels and real labeled pixels. The accuracy of
all semantic segmentation results is measured without distinguishing
between categories. (3) Mean Accuracy (mAcc) is used to calculate
the prediction accuracy of each category. Attention is focused on the
discrepancies between the different categories, and the results of all
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Table 6
Statistics on Dataset Information.

Data set information Cityscapes Synpass(Total Cloudy Foggy Rainy Sunny) Pass

Train set 2975 5700 1420 1420 1420 1440 271
Test set 1525 1290 430 420 420 420 113
Val set 500 1290 420 430 430 410 116
Number of street elements 19 22 22 22 22 22 8
categories are averaged. The calculation formula is presented below:
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here 𝑁 represents the number of image samples, 𝑇𝑃𝑖 represents the
umber of pixels in image 𝑖 that are predicted to be positive samples
nd are positive samples, 𝐹𝑃𝑖 represents the number of pixels in image
that are predicted to be positive samples but are negative samples,
nd 𝐹𝑁𝑖 represents the number of pixels in image 𝑖 that are predicted
o be negative samples but are positive samples.

Additionally, the Root Mean Square Error (RMSE) and Mean Abso-
ute Error (MAE) gauge the accuracy of estimating overall pixel values
nd the absolute difference between predictions and actual observa-
ions, respectively. The smaller value between the two indicates higher
odel accuracy when averaged over the test samples.
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where the variable 𝑁 represents the number of pixels in a single
image, while m represents the number of sample images. 𝑇𝑃𝑖 denotes
he number of correctly identified element pixels in image 𝑖, and 𝑃𝑃𝑖
epresents the number of predicted element pixels in image 𝑖.

4.3.2. Dataset
The information regarding the dataset used for the experiment

is displayed in Table 6. The experiments were conducted following
the original literature’s division of datasets into training, test, and
validation sets.

The Cityscapes dataset (Cordts et al., 2016) comprises 5000 high-
definition pinhole street view images with a resolution of 1024 × 2048
pixels. The dataset covers a variety of weather and road scenes in 50
different cities and provides pixel-level annotations in 19 categories.
This allows researchers to obtain fine-grained semantic segmentation
labels for scene understanding and object detection. Each pixel is
labeled with a specific category.

The SynPass dataset (Zhang et al., 2022) comprises 9080 synthetic
panoramic street images generated using the CARLA simulator. The im-
ages provide 22 classes of labels and have a resolution of 1024 × 2048.
To further improve the diversity of data, authors modulate the collected
weather conditions. The weather conditions consist of sunny (25%),
cloudy (25%), foggy (25%), and rainy (25%) conditions.

The Pass dataset (Yang et al., 2019) comprises 500 annotated
panoramas from 25 cities across multiple continents for evaluation
purposes. Additionally, it includes 2000 unlabeled panoramas from
40 cities that can be used to facilitate domain adaptation and create
13

pseudo-labels.
4.3.3. Results and analysis of model indicators
To validate our proposed TDDPassNet in walkability research re-

lated to SVIs, particularly PSVIs, we followed the proposed research
paradigm. Five expensive models were trained under different datasets
in the same environment, referencing the common models used in
various scenarios in Table 2. The available code provided in some of
the original papers is accessed, and the performance of the models used
in these scenarios is compared with that of TDDPassNet.

The variation curves of mean Intersection over Union (mIoU) for
different method models on various datasets are shown in Fig. 12. mIoU
is a widely accepted metric in the field of semantic segmentation. Upon
observing the change curves, it is evident that TDDPassNet achieves
higher mIoU values than other models under the same environment,
indicating its superior accuracy and precision in image semantic seg-
mentation tasks. TDDPassNet consistently performs across various im-
age datasets, highlighting its stability and generalization capabilities.
This further embodies its advantages in the field of panoramic image
semantic segmentation.

The overall performance of the models is summarized, and key
insights are provided in Table 7. The mean absolute error (MAE) and
root mean square error (RMSE) increase as the distortion of the image
changes increase, while accuracy-related metrics decrease. This may
be due to distortion and object deformation inherent in panoramic
images, resulting in an increase in average prediction error and a
decrease in prediction accuracy. Regarding the models on the Pass
dataset, there is an improvement in segmentation accuracy compared
to the synthetic dataset Synpass. The discrepancy between the Pass and
SynPass datasets may be attributed to the limited sample size of the
former and the influence of varying weather conditions on the latter.

The consistent outperformance of TDDPassNet over the other mod-
els is illustrated by Table 7, showing an average increase in mIoU
of 5.3% across all datasets. In addition, the results in the synthetic
panorama dataset Synpass indicate that our model exhibits superior
segmentation under extreme weather conditions compared to the other
methods. Furthermore, the performance on Cityscapes, a pinhole image
dataset, and Pass, a real panoramic image dataset, is commendable.
Specifically, when evaluated on the pass dataset, compared to the
widely used DeepLabV3+ model in urban walkability research, TD-
DPassNet exhibits a 4.81% decrease in MAE, a 3.22% decrease in
RMSE, a 4.4% increase in mIoU, a 2.71% increase in pixAcc, and a
1.32% increase in mAcc. Additionally, the prediction time has been
reduced by 14 ms. The superior performance of the TDDPassNet model
could be attributed to its ability to extract image features at multiple
scales, consider the diverse characteristics of image spatial structure
and channel variations through the dual attention mechanism, and
perform transformation mapping and deformation slicing processing of
each element object in the image using the deformable MLP module. By
effectively integrating these elements, the TDDPassNet model delivers
impressive results on pinhole image data while achieving more accurate
semantic segmentation of panoramic images.

4.3.4. Model ablation experiment and parameter experiment
Ablation experiments are conducted on the SynPass dataset to in-

vestigate the effectiveness of the key modules in the TDDPassNet
model. To ensure fairness, all comparison methods used in the ab-
lation experiments employ the same data enhancement methods and
parameters. The ablation focuses on three modules, and the results in
Table 8 demonstrate that the TDDPassNet model achieves the highest
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Fig. 12. Results of panoramic street images with metrics data with random sampling conducted in the city center area.
Table 7
Performance of TDDPassNet and Common Method Baseline Models on Different Datasets.

Dataset Method MAE[%] RMSE[%] mIoU[%] pixAcc[%] mAcc[%] Predict[ms/img]

Cityscapes

SegNet 7.02 7.58 51.06 89.99 60.63 94
UNet 6.73 6.42 55.37 91.05 67.03 83
PspNet 5.54 5.62 57.89 91.87 68.87 76
VPLR 4.37 4.42 57.57 92.64 72.06 69
DeepLabV3+ 4.66 4.78 57.21 92.75 70.3 72
Ours 2.39 2.63 64.63 93.92 74.45 48

Synpass

SegNet 14.18 6.4 32.91 88.97 42.62 242
UNet 13.21 6.01 33.36 90.73 44.44 186
PspNet 11.41 5.24 33.75 91.34 45.96 168
VPLR 11.73 3.85 34.26 92.08 46.83 169
DeepLabV3+ 11.06 3.28 34.44 92.37 46.39 172
Ours 8.65 2.17 38.52 95.53 49.16 96

Pass

SegNet 21.58 10.07 38.69 89.65 51.03 58
UNet 21.35 9.98 38.51 89.49 52.24 60
PspNet 16.6 7.93 45.2 91.82 53.57 54
VPLR 16.83 7.01 45.62 92.27 54.16 56
DeepLabV3+ 18.44 6.35 44.84 91.91 53.95 51
Ours 13.63 3.13 48.44 94.62 55.27 37
segmentation IoU scores in 15 out of the 22 categories of segmenta-
tion benchmarks from SynPass. The model demonstrates a significant
improvement of approximately 3.0% in extracting visual elements such
as buildings, poles, roads, vegetation, vehicles, sky, and traffic lights.
These elements pose challenges and are crucial for various fields of
urban studies.

The first modification eliminates the multi-scale feature extraction
module inserted in the middle of the Transformer structure. Only the
second scale is used for feature extraction while retaining the de-
formable MLP module and dual attention. The decrease in the model’s
mIoU by 5.11% after the feature fusion is lost and only a single scale
is utilized compared to TDDPassNet is demonstrated by Table 8. The
multi-scale feature extraction and fusion module allows the model to
access different layers of semantic perceptual information and spatial
structural details in the panoramic image data.

Experiments are conducted by removing the deformable MLP mod-
ule in each scale to investigate the effectiveness of element reprojection
transformation processing for zigzag elements in panoramic images
with feature re-learning. A significant decrease in mIoU compared to
both TDDPassNet and the No_DA model, which eliminates the Dual
Attention module, is demonstrated in Table 8. The decrease in per-
formance may be attributed to the deformable MLP’s flexibility in
handling projection transformations. This prioritizes distortion aware-
ness over fixing an offset when dealing with the panoramic image
distortion problem.

Additionally, the impact of the Dual Attention mechanism on the
model’s performance is analyzed. The model without the Dual Attention
module (No_DA) significantly underperforms TDDPassNet in terms of
mIoU, as shown in Table 8. Although No_DA improves some visual
elements, it decreases overall performance in 16 categories. This sug-
gests that enhancing local semantics in panoramic data and exploring
spatial-dimensional local correlation in multiscale spatial features is
reasonable. Improving local semantics in feature maps creates local fea-
tures with distinct spatial and channel dimensions. This aids in creating
14
more representative semantic centers and reveals spatial-dimensional
correlations in feature maps.

A series of parameter ablation experiments were conducted on the
main dataset Synpass to determine the impact of all control parameters
on the performance of TDDPassNet. The parameters that were adjusted
during the experiment, including Epochs, Initial Learning Rate, and so
forth, are presented in Table 9. The model’s pixel accuracy (pixAcc)
performance varies under different parameter settings. The bold num-
bers indicate the optimal pixel accuracy achieved on the test set, which
is 95.53%.

4.3.5. Prediction results and qualitative analysis
The trained model is used for semantic segmentation prediction

tasks. The unlabeled panorama dataset LJPass of the ancient city of
Lijiang City area is used as the validation set of prediction. Multiple
representative examples of qualitative results are presented in Fig. 13.
In each case, the proposed TDDPassNet model significantly improves
the segmentation boundaries of areas such as sky, buildings, and veg-
etation. In example (a), the model performs well in segmenting and
predicting distorted city gates. In example (d), the model also outper-
forms the baseline in recognizing road surfaces affected by lighting.
In example (b), the model has a significant advantage in segmenting
road edges. The effect is also clearer for detailed segmentation of
small objects, such as traffic lights and signs in example (e) and poles
in all examples. These qualitative cases support the findings of our
quantitative evaluation, demonstrating the effectiveness of the multi-
scale feature extraction and embedding deformable MLP modules and
Dual Attention mechanisms that we utilize.

To conduct a further qualitative analysis, we acquired the DenseP-
ASS dataset (Gao et al., 2022). This dataset comprises 100 panoramic
images and annotations for evaluation. When comparing labels, it
becomes apparent that the baseline model struggles to differentiate
distorted objects due to its inability to recognize global features and
perceive distortion in panoramic images. When faced with distortion
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Table 8
Results of model ablation experiment on SynPass dataset.
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No_Multi-scale structure 33.41 77.27 25.12 2.14 25.64 23.64 50.42 83.21 47.15 63.04 45.75 3.33 11.75 92.93 8.2 4.35 12.58 53.96 19.41 22.18 8.67 5.46 48.9
No_DMLP 36.54 81.59 31.72 5.11 33.02 27.86 51.23 86.55 52.1 70.87 52.81 4.31 13.21 93.69 8.63 5.37 15.33 58.2 18.64 21.74 9.53 8.34 54.15
No_DA 37.55 78.52 33.15 6.06 35.16 27.51 55.9 87.08 52.81 70.22 53.36 5.34 12.73 93.45 10.07 6.69 18.59 62.66 17.9 24.47 10.64 10.06 53.79
TDDPassNet 38.52 82.08 32.48 6.12 35.85 29.9 54.64 90.96 52.36 72.81 56.06 5.47 14.88 95.35 10.23 7.04 17.76 64.24 20.69 23.66 11.79 9.13 54.03
Table 9
Parameter experiment on SynPass dataset. The altered parameters be indicated by the use of underlining.

Epochs Initial learning rate Learning rate schedule Weight decay rate pixAcc[%]

100/300 5e−5 Cosine Decay, Warm-up: 5 epochs 1e−4 89.35/95.26
200 1e−5/5e−8 Cosine Decay, Warm-up: 5 epochs 1e−4 92.67/94.82
200 5e−5 Linear Decay, No Warm-up/10 epochs 1e−4 91.92/93.95
200 5e−5 Cosine Decay, Warm-up: 5 epochs 1e−3/1e−6 94.31/94.59
200 5e−5 Cosine Decay, Warm-up: 5 epochs 1e−4 95.53
Fig. 13. Qualitative comparison of semantic segmentation prediction results between the TDDPassNet model and commonly used models in walkability research on the LJPass
dataset. The figure presents several examples.
Fig. 14. Qualitative comparison between TDDPassNet model and commonly used models for walkability research on semantic partition prediction results under the densepass
dataset with labeled data.
(as shown in Fig. 14), the baseline model struggles to accurately
recognize challenging objects such as pedestrians, poles, and vehicles.
However, our TDDPassNet can segment these objects more accurately
without significant differences from the labeled image.

4.4. Analysis of results for domain adaptive methods

Panoramic images could provide a more comprehensive and distinct
global context than traditional pinhole images. For instance, they allow
for simultaneously observing roads and sidewalks in different direc-
tions. This feature enhances the quality of research ideas and model
effects for urban researchers and facilitates the acquisition of sample
data for training purposes. In the following experiment, we tested the
15
benefits of the proposed unsupervised domain adaptive multi-stage
prototype method. Our method produced high-quality sample data.

4.4.1. Feature embedding comparison of unsupervised domain adaptive
multi-stage prototype methods

The t-SNE visualization of feature embedding during domain adap-
tation from pinhole images to panoramic images of urban scenes is
shown in Fig. 15 (Van der Maaten and Hinton, 2008). Each dot repre-
sents all pixels sharing the same class in its image from the validation
set of the respective domain. The source, intermediate, and target do-
main feature embeddings in the multi-stage outdoor domain adaptation
process are shown in Fig. 15a, b, and c.
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Fig. 15. t-SNE visualization of multi-stage domain adaptation process in outdoor scene.
By comparing Fig. 15a, b, and c, it is evident that the multi-
stage adaptation process of pinhole-synthetic panorama-real panorama
results in a clear tendency of clustering of the feature space as it passes
through the intermediate domain. The initial source domain before
domain adaptation, where the feature space distribution is relatively
loose, is shown in Fig. 15a. After adopting the final target domain, the
distribution of feature space categories is balanced, and there is a good
pooling phenomenon for the same categories. This suggests that the
proposed multi-stage prototype approach bridges the domain gap in
different feature spaces and provides complementary feature alignment
between domains, making their features more closely related to their
prototypes.

4.4.2. Phased split ablation experiment and generate qualitative analysis of
label quality

An ablation experiment was conducted to verify the multi-stage
advantage of the intermediate domain prototype in our proposed unsu-
pervised domain adaptation method. The experiment used Synpass as
the intermediate domain and was divided into two parts: single-stage
and multi-stage. The intermediate domain procedure was removed in
the single-stage, but it was reserved in the multi-stage. Then, these
two methods were utilized to generate the sample label image of the
Ljpass dataset, which was then used as the validation set, and several
baseline models trained in the same environment were employed for
corresponding validation.

The mIoU effect of the verification set using tags generated by the
domain adaptive strategy at different stages is displayed in Table 10,
highlighting the gap between them. The results indicate that removing
the intermediate domain significantly reduces the recognition ability
of each model for the sample, with a mIoU gap of more than 2.5% for
each model. This demonstrates the benefits of the intermediate domain
added during the pinhole to panoramic domain adaptation process.
It assists the model in learning the relationship between the source
and target domains, resulting in improved fitting of the pseudo tag.
Using Synpass, a composite panoramic image dataset with rich sample
labels, as an intermediate domain, the model can gradually learn the
conversion process from a pinhole image to a panoramic image. This
allows for a better understanding of the feature differences between
different domains and generates higher-quality sample label images.
This method of gradual adaptation in multiple stages enhances the
model’s ability to accurately classify and label samples from both the
source and target domains, thereby improving the model’s performance
and generalization in the target domain.

The proposed unsupervised domain-adaptive multistage prototype
method for urban scenes is used to annotate the LJPass dataset ob-
tained from the study area. Examples of annotations generated by our
method are shown in Fig. 16. Panoramic image data without panoramic
sampled cars are represented by a and b in Fig. 16, while data in the
presence of panoramic sampled cars are represented by b and c. The top
part is the original image, and the bottom part is the labeled image of
16
Table 10
Validation Results of Self-labeled LJPass Datasets Generated by Baseline Model in Single
Stage and Multi-Stage.

Method Stage mIoU[%] gap[%]

SegNet Single 24.93 3.54Multi 28.47

UNet Single 31.27 2.59Multi 33.86

PspNet Single 31.61 2.74Multi 34.35

VPLR Single 31.94 2.79Multi 34.73

DeepLabV3+ Single 32.14 2.81Multi 34.95

Fig. 16. Example of automatically generated annotation of panoramic image data using
multi-stage domain adaptation.

the 8-bit color map we generated, with a category distribution of 0–18,
where the black part is the background. It can be seen that although
the generated tags are not as perfect as manual annotation, they are
relatively accurate, and the definitions of different classes are relatively
good.

4.5. Correlation analysis of street view visual elements and
four-dimensional perceived walkability

To evaluate the impact of different visual elements on perceived
walkability, the Pearson linear regression model and the parameters
of the random forest model are used to compare the visual elements
with the results of four perceived walkability scores. The ranking results
of the independent variables with significant positive (blue bar) or
negative (red bar) effects for each perceived score category are shown
in Fig. 17. We constructed four regression models corresponding to
four perceptual rating dimensions (safety, convention, comfort, and
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Fig. 17. The influence of visual elements on the 4-dimensional perceived walkability index is calculated step by step using Pearson’s multiple linear regression model and shows
the visual variables with significant influence. (Beta coefficient: * 𝑝 < 0.05 * * 𝑝 < 0.01 * * * 𝑝 < 0.001).
attractiveness). Through stepwise regression, influence variables were
added or excluded based on their impact on perceived walkability,
retaining only the visual elements that had a significant effect on the
explanation.

Based on the results in Fig. 17, the influence of visual variables
such as sky, vegetation, and road on safety, comfort, and overall
attractiveness is evident.Visual variables such as building, pavement,
and sign have a highly sensitive positive effect on comfort. These results
are consistent with previous studies that urban greenery and open
views create a sense of safety, as well as affect pedestrian comfort
and increase the attractiveness of streets (Li et al., 2022b). Meanwhile,
spacious pedestrian spaces increase the walkability of streets, making
pedestrians more comfortable and willing to travel. Convenient visual
amenities also provide pedestrians with a better walking experience.

It is worth noting that the road visual element variable has a weak
but negative effect on the convention and building element variables on
comfort. This is consistent with previous research (Gao et al., 2022),
that is, wide roads tend to have large traffic and pedestrian flows,
which has a certain impact on pedestrian comfort, while the dense and
high-rise building environment may put more psychological pressure
on pedestrians. It should also be noted that motorcycles, lorries, cars,
and buses associated with vehicles have a strong negative impact on
various perceptions. This is consistent with real or perceived obstacles
preventing pedestrians from walking on the street.

5. Discussion

A comprehensive analysis of walkability in Lijiang City, China, is
presented with a three-dimensional urban walkability research frame-
work from an urban planning perspective. The framework utilizes a
combination of multi-form and multi-modal open data, as well as mul-
tiple machine learning methods, to extract the intrinsic environmental
characteristics of the city at different scales and with different dimen-
sions of the indicator situation to provide a comprehensive assessment
of the city’s walkability.

The advantages of this framework are multifaceted. Firstly, it com-
prehensively assesses street ecosystem characteristics, physical walk-
ability, and perceived walkability using PSVI big data. By combin-
ing various objective and subjective factors into a single metric, a
17
more nuanced and inclusive walkability assessment is provided by
the framework, avoiding the pitfalls of one-sided evaluations based
on limited data sources or singular dimensions. Secondly, the frame-
work employs human–machine adversarial techniques, bridging the
gap between purely machine-based audits and on-site assessments.
More consistent results are achieved by this approach, and the relation-
ships between different perceptual dimensions and built environment
characteristics are effectively explained through correlation analyses.
Such insights could assist urban planners and designers make more
informed decisions and adjustments.

Exploring the factors affecting accessibility in different regions
through the CWI reveals potential priority areas for urban street devel-
opment. The study found that the street ecological index distribution
in the ancient city district is broad and balanced, indicating high
overall spatial quality. Physical walkability is high in the central area,
with other good areas scattered around the central ring. Perceived
walkability is prominent in the business district near the city’s main
road. However, traffic congestion on the main road lowers scores for
attractiveness and comfort, suggesting the need for green elements
to alleviate these issues to be considered. According to the spatial
distribution map of CWI, the high-score regions are concentrated in
the middle and south, while the low-score regions are distributed in
the adjacent north and east regions. This suggests that the overall
accessibility of roads in the ancient city of Lijiang City area is relatively
good, but the distribution is not uniform enough. Decision-makers and
urban planners should consider intervening in the built environment to
improve the city’s walkability.

While valuable insights into urban street walkability are provided
by this study, limitations and areas for future research are identified.
The small sample size and limited model scope mean that our semantic
segmentation model for panoramic images, based on PSVIs, needs
further optimization to better mitigate distortion effects. Enhancing the
model structure in computer vision could provide more comprehensive
scene perception for ultra-widefield panoramic images. Additionally,
we did not account for temporal variations in urban road quality. The
impact of street ecological quality on pedestrian walkability across
different time dimensions could be studied by future research utilizing
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seasonal PSVIs from crowdsourced maps. Furthermore, our human–
machine adversarial evaluation did not fully consider different age
groups and life stages. In future studies, walking-related variables
should be calibrated to meet the diverse needs of various pedestrians,
such as children and older adults. Finally, our research was limited to
a single city, and no relocation experiments were conducted. Future
experiments in diverse urban environments are necessary to validate
and generalize our methodology.

6. Conclusion

This paper presents a comprehensive framework for urban walking
ability, which calculates the Comprehensive Walking Ability Index
(CWI) by integrating ecological, physical, and perceptual walking abil-
ity dimensions. The method is then verified through a case study of
Lijiang City, China. Of particular note is the novel consideration of
two major issues about panoramic images within the realm of urban
research based on PSVIs: image distortion and lack of annotated train-
ing data. Addressing these challenges, a novel model, TDDPassNet,
has been proposed to tackle these challenges by enhancing semantic
segmentation of panoramic images, thereby bridging existing research
gaps. Moreover, an unsupervised domain-adaptive multi-stage pro-
totype method for urban scenes is introduced to partially alleviate
limitations in sample size within target urban research areas, thereby
providing valuable dataset support for such endeavors. Compared to
previous methodologies, the proposed TDDPassNet demonstrated an
average improvement of 5.3% in mIoU across all datasets. The incor-
poration of innovative techniques, such as deformable MLP modules
and dual attention mechanisms, has enhanced the model’s ability to
perceive distortion and detect transformations, thereby improving the
accuracy and credibility of street walkability assessment. Although
traditional field investigation methods are known for their accuracy,
they are also labor-intensive. In contrast, we have implemented large-
scale scene analysis and complex computing based on a deep learning
framework, which is suitable for a wide range of data processing,
improves efficiency and scalability, and meets the requirements of
modern urban research.

Looking ahead, our method has potential applications in other
fields, such as real-time urban monitoring, disaster response, and smart
city development. Future research could explore integrating this frame-
work with other urban planning tools to create more dynamic and
adaptive urban environments. By addressing the identified limitations
and expanding the scope of the research, the utility and applicability
of our proposed walkability assessment framework could be further
enhanced.
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