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A B S T R A C T

Vision Transformer (ViT) has achieved unprecedented success in vision tasks with the assistance of abundant
data. However, the lack of inductive bias in lightweight ViT makes learning locality challenging on small
datasets, leading to poor performance. This limitation impedes the application of lightweight ViT in scenarios
with limited datasets and computational power. Knowledge Distillation (KD) allows student models to benefit
from the teacher model. However, in the progressive learning stage, traditional single-stage KD methods are
usually suboptimal for delivering fixed knowledge to the growing student model. To address these issues, we
propose a simple yet effective two-stage KD method called Curriculum Information Knowledge Distillation
(CIKD) for the first time. Specifically, we incorporate a curriculum learning framework, progressing from easy
to difficult, in the KD curriculum. At the first stage, i.e., Attention Locality Imitation (ALI), the student model
learns locality from the low-level semantic features of the teacher model through self-attention distillation.
Afterward, at the second stage, i.e., Logit Mimicking (LM), the student model learns label information and
high-level semantic logit from the teacher model. Without bells and whistles, our approach achieves state-of-
the-art results on 8 small-scale datasets with ViT-Tiny (5.0M). Our code and model weights are available at:
https://github.com/newLLing/CIKD.
1. Introduction

Vision Transformer (ViT) [1] is now widely used in computer
vision tasks, demonstrating unprecedented strong performance in sit-
uations with abundant data. For instance, in image classification tasks,
ViT, which lacks inductive biases, is initially pre-trained on the ex-
tensive JFT-300M dataset. It is then fine-tuned on the Imagenet-1K
dataset [2]. In this process, ViT set new state-of-the-art (SOTA) per-
formance benchmarks. However, it is challenging for lightweight ViT
to achieve optimal performance in practical applications when trained
on small datasets. Many studies now attribute the reason for its poor
performance to the lack of inductive bias in the ViT architecture [1,3].
Specifically, the locality, which is of great importance for understand-
ing images, is hard to learn with a small dataset due to the high
flexibility and the intrinsic globality of the self-attention mechanism
in ViT.
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Knowledge distillation (KD) allows lightweight ViT to benefit from
high-performing ViT [4,5]. However, traditional KD only transfers fixed
knowledge in the progressive learning process [4,6], which cannot
maximize mutual information [7]. Recently, in the fields of Natural
Language Processing and Computer Vision, two-stage KD methods have
been proposed [8,9]. However, these methods are based on training
using a masking mechanism, which requires an additional decoder to
compute the knowledge distillation loss. These methods raise concerns
as the artificially partitioned encoder and decoder may constrain the
positions where semantic information can appear, potentially leading
to the loss of low-level information. As a result, such methods generally
exhibit suboptimal generalization capabilities [10], and they do not
consider how to perform two-stage KD on small datasets.

As shown in Fig. 1, (a) ViT-Base pre-trained with the Dino method
[11] has demonstrated an emphasis on local features of images on the
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Fig. 1. Comparison of Mean Attention Distance (MAD) [1] of (a) ViT-Base Pre-trained, (b) ViT-Base Fine-tuned, (c) ViT-Tiny and (d) ViT-Tiny + CIKD.
Cifar100 dataset. Results from (b) ViT-Base Fine-tuned indicate that
after fine-tuning, ViT learns to allocate attention more reasonably, with
shallow blocks focusing more on local features and deep blocks prior-
itizing global features. However, (c) ViT-Tiny was trained directly on
small datasets without pre-training. Its results indicate that it appears
to have difficulty capturing local features and does not effectively learn
hierarchical information from locality to globality. Both the shallow
and deep layers of ViT-Tiny focus on global features, which is not
conducive to its understanding of images.

We find that first using the Dino pre-training method, followed by
fine-tuning, essentially teaches the model how to perceive objects in im-
ages during the pre-training stage and then uses fine-tuning to guide the
model in recognizing what objects are present in images from a specific
dataset. This approach shares a similarity with the principles of human
education. In human education, teachers initially instruct students with
simple courses, starting from the basics, allowing students to acquire
fundamental skills. After students have mastered more straightforward
courses, more complex ones are introduced to guide them in learning
abstract and intricate concepts. We believe that the patient teacher
model should possess patience, allowing the student model to learn
progressively from easy to difficult tasks. Therefore, we develop a two-
stage knowledge distillation for the student model called Curriculum
Information Knowledge Distillation (CIKD) by combining knowledge
distillation and curriculum learning. In the first stage, i.e., Attention
Locality Imitation (ALI) encourages the student model to focus only
on the intrinsic features of the images and closely mimic the self-
attention behavior (i.e., scaled dot-product of query, key, and value)
of the teacher model. This is akin to injecting local inductive biases
into the student model, enhancing its feature extraction capability.
This also enables the student model to effectively mimic the process
of the teacher model transitioning from shallow-level capture of local
features in images to deep-level capture of global features, ultimately
enhancing feature extraction capability. The second stage, i.e., Logit
Mimicking (LM), involves constraining the student model’s outputs to
match those of the teacher model, enabling the student model to learn
information corresponding to image labels. The learning process from
2 
the teacher model’s low-level semantic features to high-level semantic
logit and label follows a curriculum, progressing from easy to difficult,
consistent with human learning paradigms. Furthermore, this two-stage
knowledge distillation method completes knowledge transfer between
the teacher and student [8,9], also known as maximizing mutual infor-
mation [7]. To the best of our knowledge, we are the first to use total
image inputs for a two-stage distillation method in ViT.

The simplicity of our approach lies in the fact that it only requires
fine-tuning the ViT-Base pre-trained using the Dino method [11] on the
target dataset once. Then, setting it to evaluate mode allows it to serve
as the two-stage teacher model to guide the student model’s learning
process, and there is no need to modify particular structures for CIKD.
The effectiveness of our proposed method is demonstrated by achieving
impressive results, such as a TOP-1 Accuracy (%) of 89.8 on the
CIFAR100 [12] dataset, 98.7 on the CIFAR10 [12] dataset, 96.8 on the
Oxford Flowers [13] dataset, 79.7 on the FGVC-Aircraft [14] dataset,
93.7 on the CINIC10 [15] dataset, 93.5 on the Oxford-IIITPets [16]
dataset, 88.5 on Chaoyang dataset [17] and 88.1 on the Stanford
Cars [18] dataset using ViT-Tiny with CIKD. In particular, after using
our method, CIKD, ViT-Tiny only needs to use existing pre-trained
teachers for knowledge distillation without pre-training on large-scale
data sets. Model parameters of ViT-Tiny are 15.5 times smaller than
the teacher’s model, but ViT-Tiny maintains the 97.8% accuracy of the
teacher’s model, which is 91.8% accuracy. For the Cifar10 dataset, the
model parameters of ViT-Tiny are 15.5 times smaller compared to the
teacher model, yet the accuracy surpasses that of the teacher model.
Specifically, the Top-1 Accuracy of the student model reaches 98.7%,
whereas the teacher model achieves 98.6%.

In summary, our main contributions are:

• We introduce a progressive knowledge distillation curriculum
method called CIKD. This method simulates the human progres-
sive learning process, with teachers imparting knowledge from
easy to difficult, thereby enhancing the efficiency of knowledge
distillation.

• The proposed Attention Locality Imitation (ALI) can facilitate the
student model learning locality from the teacher model, which
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can significantly improve student model generalization in the
case of a small amount of data. Through the second stage, Logit
Mimicking (LM), the student model acquires knowledge from the
teacher model regarding label information, thereby maximizing
model performance.

• The experimental results demonstrate that the lightweight ViT-
Tiny trained using CIKD exhibits competitive performance across
8 small-scale datasets, comparable to the current state-of-the-
art pre-training and fine-tuning methods. Furthermore, the ef-
fectiveness of our approach is further validated through visual
analysis.

. Related work

Vision Transformer: Convolutional Neural Networks [19,20] have
ong dominated the field of computer vision. Their inherent inductive
iases, including locality and spatial invariance, were specifically de-
igned for image recognition tasks. Locality, in particular, enables them
o perform exceptionally well on small datasets. The Vision Transformer
ViT) model, based on the Self-Attention mechanism [1], has gradually
tarted to replace Convolutional Neural Networks as the dominant
rchitecture in computer vision when ample data is available [21,22].
owever, ViT still struggles to perform well on small datasets.

ViT for Small Datasets: ViT demonstrates unsatisfactory perfor-
ance when trained on small datasets such as Cifar100 [12]. One

olution is to carefully design the architecture of ViT [23,24] to in-
roduce inductive bias. Another approach is to use knowledge distil-
ation methods to transfer inductive bias to ViT [25–27]. MCT-KD [28]
roposed a momentum contrast transformer to enable ViT to be well-
rained on small datasets. DeiT [3] explored for the first time the use
f knowledge distillation for training ViT using a teacher model with
CNN architecture. This study primarily focuses on using knowledge

istillation to introduce the inductive bias of locality on small datasets.
Curriculum Learning: Curriculum learning, originally introduced by

rior research [29], is a method for training networks by organizing the
equence of learning tasks and incrementally increasing the learning
ifficulty. This training strategy has been widely adopted in computer
ision [30] and natural language processing [31]. RCO [32] proposed
sing the teacher’s intermediate state sequences as a curriculum to
upervise the student model’s learning at different stages. LFME [33]
uggested using the teacher model as a measure of sample difficulty
nd organizing training samples from easy to hard, enabling the model
o learn feature space progressively from simple to challenging samples.
owever, these methods often require complex design and compu-

ational processes. CEAD [34] allowed for a structured approach to
eaching and learning within the Graph Transformers architecture,
here teachers initially provide students with rigorous supervision and
uidance and then gradually allow students to explore and innovate
reely outside of the classroom. TC3KD [35] proposed a novel knowl-
dge distillation method via teacher-student cooperative curriculum
ustomization. In contrast, our proposed CIKD involves using knowl-
dge distillation information as a curriculum, allowing the student
odel to first acquire locality in the ALI stage and then learn the

eacher model’s high-level semantic logit and label information in the
M stage to achieve better performance. Our approach is comparatively
ore straightforward.

Knowledge Distillation: The initial concept of knowledge distilla-
ion involved transferring ‘‘dark knowledge’’ from a large model to a
maller one. Subsequently, to improve distillation efficiency, a wide
ange of distillation methods emerged. These methods can mainly
e categorized into two paradigms: logit-based distillation [36,37]
nd feature-based distillation [38,39]. TinyMIM [4] explored various
istillation targets to transfer the success of large MIM-based pre-
rained models to smaller ones. MiniLM [6] and MiniLMv2 [40] used
nowledge distillation to compress the language model in the field of
3 
natural language processing. The mentioned research on the Multi-
Head Self-Attention distillation in feature distillation has paid little
attention to low-layer features because shallow features typically have
smaller receptive fields and lack semantic content. LSFTN [41] adopted
a student-aware teacher learning procedure before knowledge distilla-
tion. LG [42] used the locality of CNN to improve the performance of
ViT. In CIKD, we utilize both shallow and deep features for imitation
in the ALI stage because distilling this early self-attention behavior
can guide the student model on how to form better attention maps
initially [5]. This results in an improved feature extraction capability
for the student model, enabling it to perform more efficiently in feature
extraction on small datasets.

3. Curriculum information knowledge distillation

Our Curriculum Information Knowledge Distillation (CIKD) method
primarily focuses on transferring the teacher model’s self-attention
behavior in the first stage. The student model learns the teacher’s low-
level semantic features, allowing the teacher model to impart locality,
thereby enhancing the student model’s feature extraction capability to
focus correctly on objects within images. After going through the first
stage, ALI, the student model can be seen as being imbued with a form
of inductive bias towards locality. Combined with the second stage,
LM, which imparts label information and the teacher model’s high-level
semantic logit, the student model gains a better understanding of the
information related to object-label correspondence within images. As
demonstrated in Table 9, reversing the two-stage knowledge distillation
process, conducting the LM stage first, followed by the ALI stage,
leads to poor performance. This further underscores the viability of
our approach to knowledge distillation, starting with easier tasks before
progressing to more challenging ones.

In this section, we introduce the first-stage distillation method,
Attention Locality Imitation, in Section 3.1, followed by an explanation
of the second-stage distillation method, Logit Mimicking, in Section 3.2.
(For details, please refer to algorithm 1.) Finally, in Section 3.3, we
provide a theoretical explanation of the feasibility of the two-stage
distillation method.

3.1. Attention locality imitation

During the training process, the Attention Locality Imitation (ALI)
involves the forward propagation of the teacher model, the forward
propagation of the student model, and backpropagation. As shown
on the right side of Fig. 3, the Vanilla Student only needs to mimic
the self-attention behavior of two transformer blocks, specifically the
first-level transformer block and the Learning Objective Block in the
teacher model. The choice of the Learning Objective Block may vary
depending on the scale of the dataset. During the forward propagation
process, the self-attention behavior of the first-level transformer block
and the Learning Objective Block in the teacher model is compared
with the self-attention behavior of the first and last-level transformer
blocks in the student model to calculate the Kullback–Leibler (KL)
divergence, resulting in the ALI loss. In the first stage of ALI, label
information is not utilized. The model’s sole focus is on the image’s
features. It improves its feature extraction capabilities by mimicking
the self-attention behavior of the teacher model. After the first stage,
the teacher model essentially imparts local inductive bias to the student
model.

3.1.1. Transformer block
A ViT consists of 𝑁 sequentially stacked transformer blocks. For

simplicity, let us assume that the input to the 𝑖th transformer block,
denoted as 𝑋𝑖 ∈ R𝑃×𝐻 , where 𝑖 ∈ [1, 𝑁], 𝑃 represents the number of
patches, and 𝐻 is the dimension of hidden features. The output of each
transformer block is used as the input of the next one. Each transformer
block consists of a Multi-Head Self-Attention Layer (MHSA), a Fully
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Fig. 2. Schematic diagram of Curriculum Information Knowledge Distillation (CIKD) proposed. In the Attention Locality Imitation (ALI) stage (left image), after undergoing patch
transformation, the image is separately fed into the encoders of both the teacher model and the student model for feature extraction. In the Logit Mimicking (LM) stage (right
image), the student model from the first stage continues to serve as the student model for the second stage.
Fig. 3. Schematic representation of the proposed Attention Locality Imitation (ALI). Optimizing the student model (ViT-Tiny) to mimic the self-attention behavior of the teacher
model (ViT-Base) using the original image converted into patches as input. We set the number of heads in the first layer and the Learning Objective Block (LOB) of the student
model to be the same as the teacher model.
Connected Feed-Forward Network(FFN), and Layer Normalization(LN).
The forward pass through the 𝑖th Transformer Block can be represented
as:
𝑇𝑖 = MHSA(LN(𝑋𝑖)),

𝑇̇𝑖 = 𝑇𝑖 +𝑋𝑖,

𝑇̈𝑖 = FFN(LN(𝑇̇𝑖)),

𝑋𝑖+1 = 𝑇̇𝑖 + 𝑇̈𝑖,

(1)

where MHSA() represents the Multi-Head Self-Attention layer, LN()
represents the Layer Normalization, and FFN() represents the fully
connected Feed-Forward Network.

3.1.2. Self-attention behavior
In the MHSA module, query, key, and value are the most fundamen-

tal and critical vectors. For the 𝑘th head in the 𝑖th Transformer Block,
we can compute its Query and Key, as well as the Value’s self-attention
behavior. They are implemented as scaled dot-product:

𝑆𝐴𝐵𝑄𝐾
𝑖,𝑘 = Sof tmax

(

𝑄𝑘
𝑖 (𝐾

𝑘
𝑖 )

𝑇

√

𝐻∕𝐾

)

, (2)

𝑆𝐴𝐵𝑉 𝑉
𝑖,𝑘 = Sof tmax

(

𝑉 𝑘
𝑖 (𝑉

𝑘
𝑖 )

𝑇

√

)

. (3)

𝐻∕𝐾
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In the 𝑖th Transformer Block, 𝑆𝐴𝐵𝑄𝐾
𝑖 is constructed by stacking

𝐾 𝑆𝐴𝐵𝑄𝐾
𝑖,𝑘 modules, and similarly, 𝑆𝐴𝐵𝑉 𝑉

𝑖 is formed by stacking 𝐾
𝑆𝐴𝐵𝑉 𝑉

𝑖,𝑘 modules. The dimensions of 𝑆𝐴𝐵𝑄𝐾
𝑖 and 𝑆𝐴𝐵𝑉 𝑉

𝑖 are denoted
as (𝐵𝑆,𝐾,𝑁,𝑁), where 𝐵𝑆 represents the batch size, 𝐾 represents the
number of heads in the Multi-Head Attention, and 𝑁 represents the
number of patches.

To ensure an accurate self-attention behavior, we match the number
of heads in the Multi-head Self-Attention of the first and last layers of
the student model with the number of heads in the Multi-head Self-
Attention of the teacher model. To facilitate comprehensive imitation
of the self-attention module, we transfer the self-attention behavior of
𝑄𝑢𝑒𝑟𝑦−𝐾𝑒𝑦𝑇 and 𝑉 𝑎𝑙𝑢𝑒−𝑉 𝑎𝑙𝑢𝑒𝑇 from the teacher model to the student
model. This process ensures that the student model effectively learns to
focus on local features from the teacher model.

For the student model to mimic the self-attention behavior of the
teacher model, we set the number of attention heads in the first and last
Transformer Blocks of the student model to be the same as that of the
teacher model, allowing for the calculation of self-attention behavior.
Our approach does not incur additional overhead. We define the num-
ber of teacher attention heads as 𝐾 and calculate the KL-divergence
between 𝑆𝐴𝐵𝑄𝐾

𝑖 (see Eq. (2)) and 𝑆𝐴𝐵𝑉 𝑉
𝑖 (see Eq. (3)) of the teacher

model and the student model as the loss function. This optimization
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encourages the student model to imitate the self-attention behavior
of the teacher model. We define 𝑆𝑄𝐾

𝑇−𝑘,𝑖 to represent the self-attention
behavior of k heads of the 𝑄𝑢𝑒𝑟𝑦−𝐾𝑒𝑦𝑇 of the teacher model’s 𝑖th layer
transformer block and 𝑆𝑄𝐾

𝑆−𝑘,𝑖 represent the self-attention behavior of k
eads of the 𝑄𝑢𝑒𝑟𝑦−𝐾𝑒𝑦𝑇 of the Student model’s 𝑖th layer transformer

block. The 𝑉 𝑎𝑙𝑢𝑒 − 𝑉 𝑎𝑙𝑢𝑒𝑇 definitions of 𝑆𝑉 𝑉
𝑇−𝑘,𝑖 and 𝑆𝑉 𝑉

𝑆−𝑘,𝑖 are similar
defined. We define the Learning Objective Block as LOB. Therefore:

𝐿1−1
𝐴𝐿𝐼 = 1

𝐾

𝐾
∑

𝑘=1

(

𝐿𝐾𝐿

(

𝑆𝐴𝐵𝑄𝐾
𝑇−𝑘,1, 𝑆𝐴𝐵

𝑄𝐾
𝑆−𝑘,1

)

+ 𝐿𝐾𝐿

(

𝑆𝐴𝐵𝑉 𝑉
𝑇−𝑘,1, 𝑆𝐴𝐵

𝑉 𝑉
𝑆−𝑘,1

))

, (4)

𝐿𝐿𝑂𝐵−12
𝐴𝐿𝐼 = 1

𝐾

𝐾
∑

𝑘=1

(

𝐿𝐾𝐿
(

𝑆𝐴𝐵𝑄𝐾
𝑇−𝑘,𝐿𝑂𝐵 , 𝑆𝐴𝐵

𝑄𝐾
𝑆−𝑘,12

)

+ 𝐿𝐾𝐿
(

𝑆𝐴𝐵𝑉 𝑉
𝑇−𝑘,𝐿𝑂𝐵 , 𝑆𝐴𝐵

𝑉 𝑉
𝑆−𝑘,12

)

)

, (5)

𝐴𝐿𝐼 = 𝐿1−1
𝐴𝐿𝐼 + 𝐿𝐿𝑂𝐵−12

𝐴𝐿𝐼 . (6)

During the entire training process, where the teacher model re-
ains frozen, and the student model is trainable, we calculate the
L-divergence between the 𝑆𝐴𝐵 of the first layer of the student model
nd the 𝑆𝐴𝐵 of the first layer of the teacher model to obtain 𝐿1−1

𝐴𝐿𝐼 .
Further, we compute the KL-divergence between the 𝑆𝐴𝐵 of the LOB
layer of the student model and the 𝑆𝐴𝐵 of the last layer of the teacher
model to obtain 𝐿𝐿𝑂𝐵−12

𝐴𝐿𝐼 . Then, we add them together to obtain 𝐿𝐴𝐿𝐼 .
In the ALI stage, the selection of the Learning Objective Block

plays a crucial role. Therefore, we summarize the selection strategy of
the Learning Target Block by extracting data proportionally from the
same dataset and experimenting on different datasets (see Fig. 4). The
principle is that the closer the block is to the input layer of the teacher’s
model, the smaller the amount of data; hence, it should be selected as
the Learning Target Block. Subsequently, knowledge distillation should
be conducted between the last layer of the selected block of the student
and teacher models. Additionally, it is essential to distill knowledge
from both the shallow block of the student model and the teacher
model.

3.2. Logit mimicking

After undergoing the Attention Locality Imitation, the student model
has gained locality. However, limited by the smaller model parameters
and smaller dataset, after the first stage, the student model cannot
achieve satisfactory performance even after further fine-tuning on
the small dataset. To improve the performance further, we start the
second stage of LM, which aims to quickly learn the correspondence
between image features and their respective labels. For the LM stage,
we continue to use the ViT-Base Fine-Tuned model as the teacher, but
in contrast to the first stage of Attention Locality Imitation, we use the
teacher model’s logit outputs for distillation in this stage. The student
model distilled in the first stage is referred to as the Distilled Student
for the second stage (see Fig. 2). Inspired by prior research [37], the
traditional distillation loss is decomposed into two parts, combined
with the cross-entropy loss between the class probabilities from the
Distilled Student and the label information as the loss function for the
Distilled Student. We define the model’s classification probability for 𝐶
classes as 𝐏 = [𝑝1, 𝑝2,… , 𝑝𝑖,… , 𝑝𝑐 ] ∈ R1×𝐶 ,where 𝑝𝑖 is the probability of
the 𝑖th class. Therefore:

𝑝𝑖 =
exp(𝑧𝑖)

∑𝐶
𝑗=1 exp(𝑧𝑗 )

, (7)

here 𝑧𝑖 and 𝑧𝑗 represent the logit for the 𝑖th class and the 𝑗th class,
espectively. The probability for the target class t can be represented
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as 𝑝̆𝑡, and all other non-target classes can be represented as 𝑝̆∖𝑡:

̆𝑡 =
exp( 𝑧𝑡𝑇 )

∑𝐶
𝑗=1 exp(

𝑧𝑗
𝑇 )

, (8)

̆∖𝑡 =

∑𝐶
𝑘=1,𝑘≠𝑡 exp

(

𝑧𝑘
𝑇

)

∑𝐶
𝑗=1 exp

( 𝑧𝑗
𝑇

) . (9)

We can calculate 𝑝̂𝑖 = [𝑝̂1,… , 𝑝̂𝑡−1, 𝑝̂𝑡+1,… , 𝑝̂𝐶 ] ∈ R1×(𝐶−1) using a
softmax function with temperature 𝑇 as follows:

𝑝̂𝑖 =
exp

(

𝑧𝑖
𝑇

)

∑𝐶
𝑗=1,𝑗≠𝑡 exp

( 𝑧𝑗
𝑇

) . (10)

The Target Class Knowledge Distillation (TCKD) [37] represents the
imilarity between the teacher’s and student’s binary probabilities of
he target class:

𝐶𝐾𝐷 = 𝑝̆𝑇 𝑒𝑡 log

(

𝑝̆𝑇 𝑒𝑡
𝑝̆𝑆𝑡𝑡

)

+ 𝑝̆𝑇 𝑒∖𝑡 log

(

𝑝̆𝑇 𝑒∖𝑡
𝑝̆𝑆𝑡∖𝑡

)

. (11)

The Non-Target Class Knowledge Distillation (NCKD) [37] repre-
sents the similarity between the teacher’s and student’s probabilities
among non-target classes:

𝑁𝐶𝐾𝐷 = 𝑝̆𝑇 𝑒∖𝑡

𝐶
∑

𝑖=1,𝑖≠𝑡
𝑝̂𝑇 𝑒𝑖 log

(

𝑝̂𝑇 𝑒𝑖
𝑝̂𝑆𝑡𝑖

)

. (12)

The knowledge distillation loss function for LM can be represented
as:

𝐿𝐿𝑀 = 𝑇𝐶𝐾𝐷 + 𝛼𝑁𝐶𝐾𝐷, (13)

we define the output probability of the student model as 𝑃 , the label
information as 𝑌 , the logit output of the student model as 𝑧𝑆𝑡, the logit
utput of the teacher model as 𝑧𝑇 𝑒, and the temperature as 𝑇 . The loss
unction for the second stage is defined as:

= 𝐿𝐶𝐸 (𝑃 , 𝑌 ) + 𝐿𝐿𝑀 (𝑧𝑆𝑡, 𝑧𝑇 𝑒, 𝑇 ), (14)

here 𝐿𝐶𝐸 represents the cross-entropy loss function.
As indicated in Table 4, models utilizing single-stage distillation

emonstrate lower performance. It is noteworthy that consolidating the
wo stages into a single stage may complicate model optimization and
esult in unsatisfactory performance. Due to our precise design of the
wo-stage knowledge distillation, incorporating LM allows us to achieve
mproved performance.

.3. Analysis

Our proposed two-stage distillation method is more effective than
ingle-stage methods. This can be observed from Fig. 6, where it
s evident that two-stage distillation learns more locality. Addition-
lly, Table 4 shows that the two-stage distillation achieves better
erformance. From a theoretical perspective, we can view two-stage
istillation by considering mutual information as discussed in [7]. Our
pproach allows us to analyze how two-stage distillation facilitates
ubstantial knowledge transfer. Knowledge distillation can be explained
s the process of maximizing the mutual information (𝐼) between
he student model (𝐹𝑆 ) and the teacher model (𝐹 𝑇 ). Representing
he parameters of the student model as 𝛩𝑆 and the teacher model
arameters as 𝛩𝑇 . The dataset used for feature-based distillation, which
nly utilizes the semantic information of images, can be represented
s 𝑋𝐹 . In contrast, the dataset used for logit-based distillation, which
ncorporates both the visual and label information of images, can be
epresented as 𝑋𝐿. Using single-stage knowledge distillation can be
epresented as:

argmax 𝐼𝛩𝑆 ,𝛩𝑇 (𝐹 𝑇 , 𝐹𝑆
|𝑋𝐹 ), (15)
𝛩𝑆
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Table 1
Summary of datasets used in the experiments.

Dataset Image size Train size Test size Classes

CIFAR100 [12] 32*32 50,000 10,000 100
CIFAR10 [12] 32*32 50,000 10,000 10
CINIC10 [15] 32*32 90,000 90,000 10
Oxford Flowers [13] 32*32 2040 6149 102
Oxford-IIITPets [16] 32*32 3680 3669 37
FGVC-Aircraft [14] 224*224 6667 3533 102
Stanford Cars [16] 224*224 8144 8041 196
Chaoyang [17] 512*512 3357 2139 4

argmax
𝛩𝑆

𝐼𝛩𝑆 ,𝛩𝑇 (𝐹 𝑇 , 𝐹𝑆
|𝑋𝐿), (16)

where Eq. (15) represents the process of maximizing mutual informa-
tion using Feature-based distillation, and Eq. (16) represents the pro-
cess of maximizing mutual information using Logit-based distillation.
Our proposed CIKD can be represented as:

argmax
𝛩𝑆

(𝐼𝛩𝑆 ,𝛩𝑇 (𝐹 𝑇 , 𝐹𝑆
|𝑋𝐹 ) + 𝐼𝛩𝑆 ,𝛩𝑇 (𝐹 𝑇 , 𝐹𝑆

|𝑋𝐿)

− 𝐼𝛩𝑆 ,𝛩𝑇 (𝐹 𝑇 , 𝐹𝑆
|(𝑋𝐹 , 𝑋𝐿))). (17)

The mutual information defined in Eq. (17) is larger than that
defined in Eqs. (15) and (16), indicating that our CIKD method can
transfer more mutual information. Knowledge distillation primarily em-
phasizes transferring image feature knowledge from unlabeled datasets
to the teacher model, enhancing its feature extraction capabilities. On
the other hand, knowledge distillation on labeled datasets also imparts
knowledge of feature extraction and labeling information. However,
there are both similarities and disparities in the feature extraction
knowledge between these two approaches. As illustrated in Fig. 6, ‘‘(a)
ViT-Tiny + LM’’ and ‘‘(c) ViT-Tiny + ALI’’ exhibit distinct effects on the
image, indicating differing focal points in feature extraction. As shown
in Fig. 1, the student model and the teacher model have the closest
CKA after using CIKD. This is because two-stage distillation completes
knowledge transfer so that the mutual information between the student
model and the teacher model is as large as possible.

4. Algorithm

To provide a more precise explanation of our approach, we illustrate
the algorithmic process using pseudo-code in algorithm 1. In the first
stage, ALI, given the fine-tuned teacher model, we optimize the student
model through backward gradient propagation. This process involves
utilizing the self-attention behavior of the first layer and the Learning
Objective Block of the teacher model, along with the first and last layers
of the student model, as inputs to the loss function. Moving to the
second stage, we initialize the classified head of the distilled student
model. Subsequently, we optimize the student model again through
backward gradient propagation. In this stage, we use the logit output
from the teacher model along with the logit output from the student
model as inputs to the loss function.

5. Experiments

5.1. Setting

Datasets: We test the performance of our method on eight different
datasets. The CIFAR-100 [12] dataset (Canadian Institute for Advanced
Research, 100 classes) is a subset of the Tiny Images dataset and
consists of 60 000 32 × 32 color images. The 100 classes in the CIFAR-
100 are grouped into 20 superclasses. There are 600 images per class.
The CIFAR-10 [12] dataset (Canadian Institute for Advanced Research,
10 classes) is a subset of the Tiny Images dataset and consists of

60 000 32 × 32 color images. CINIC-10 [15] is a dataset for image
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Algorithm 1 The training process of CIKD
1: First Stage: The training process of the Attention Locality Imitation

(ALI)
2: Input: Training set: 𝑋, the Learning Objective Block: LOB, teacher

model: 𝜃𝑇 , epoch: 𝑁 .
3: Output: Distilled student model: 𝜃𝑆_𝐴𝐿𝐼 .
4: Initialize: Initialize Student model 𝜃𝑆 , 𝑛 = 1, set the teacher model

𝜃𝑇 in evaluation mode.
5: for 𝑛 = 1 to 𝑁 do
6: 𝐻𝑇 = Embedded_Patches_Teacher(𝑋) ⊳ Convert image into

token input.
7: 𝐻𝑆 = Embedded_Patches_Student(𝑋) ⊳ Convert image into

token input.
8: for 𝑖 = 1 to LOB do
9: if 𝑖 == 1 or 𝑖 == LOB then
0: 𝑆𝐴𝐵𝑇 = Transformer_Block(𝐻𝑇 ) ⊳ Obtain

the Self-Attention Behavior of the first layer and the LOB layer of
𝜃𝑇 with 𝑒𝑞. (2) and 𝑒𝑞. (3).

1: 𝑆𝐴𝐵𝑆 = Transformer_Block(𝐻𝑆 ) ⊳ Obtain
the Self-Attention Behavior of the first layer and the LOB layer of
𝜃𝑆 with 𝑒𝑞. (2) and 𝑒𝑞. (3).

12: end if
13: 𝐻𝑇 = Transformer_Block(𝐻𝑇 ) ⊳ Forward propagate through

the Transformer Block of the teacher model 𝜃𝑇 with 𝑒𝑞. (1) .
14: 𝐻𝑆 = Transformer_Block(𝐻𝑆 ) ⊳ Forward propagate through

the Transformer Block of the student model 𝜃𝑆 with 𝑒𝑞. (1) .
15: 𝑖 = 𝑖 + 1
16: end for
17: Obtain 𝐿𝐴𝐿𝐼 by calculating 𝑒𝑞. (4) to 𝑒𝑞. (6).
18: Update the student model 𝜃𝑆 .
19: 𝑁 = 𝑁 + 1
20: end for
21: Output: Distilled student model: 𝜃𝑆_𝐴𝐿𝐼 .
22:
23: Second Stage: The training process of the Logit Mimicking (LM)
24: Input: Training set: 𝑋, label set: 𝑌 , teacher model: 𝜃𝑇 , distilled

student model: 𝜃𝑆_𝐴𝐿𝐼 , epoch: 𝑀 , temperature: 𝑇 .
25: Initialize: Initialize the classification’s head of the distilled student

model: 𝜃𝑆_𝐴𝐿𝐼 , 𝑚 = 1, set the teacher model 𝜃𝑇 in evaluation mode.
26: for 𝑚 = 1 to 𝑀 do
27: 𝑧𝑇 𝑒 = 𝜃𝑇 (𝑋) ⊳ Obtain the logit output of the teacher model.
28: 𝑧𝑆𝑡 = 𝜃𝑆_𝐴𝐿𝐼 (𝑋)⊳ Obtain the logit output of the student model.
9: Obtain the 𝐿𝐿𝑀 by calculating 𝑒𝑞. (11) to eq. (14).
0: Update the student model 𝜃𝑆 .
1: 𝑀 = 𝑀 + 1
2: end for
3: Output: Student model: 𝜃𝑆_𝐶𝐼𝐾𝐷.

classification. It has a total of 270,000 images, 4.5 times that of
CIFAR-10. It is constructed from two different sources: ImageNet and
CIFAR-10. Specifically, it was compiled as a bridge between CIFAR-10
and ImageNet. Oxford Flower [13] is an image classification dataset
consisting of 102 flower categories. The flowers chosen to be flow-
ers commonly occur in the United Kingdom. Each class consists of
between 40 and 258 images. The Oxford-IIIT Pet [16] Dataset is a 37-
category pet dataset with roughly 200 images for each class. The images
have large variations in scale, pose, and lighting. FGVC-Aircraft [14]
contains 10,200 images of aircraft, with 100 images for each of 102
different aircraft model variants, most of which are airplanes. The
Stanford Cars [16] dataset consists of 196 classes of cars with a total
of 16,185 images taken from the rear. The data is divided into almost
a 50–50 train/test split with 8144 training images and 8041 testing
images. The Chaoyang [17] has 4021 training samples and 2139 test
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samples for 4 classes of the medical image domain. The specific details
of each dataset are shown in Table 1.

Model: Consistent with Deit [3], the teacher model utilizes the
original ViT-Base architecture. Specifically, the teacher model utilizes
the original ViT-Base architecture: 12 encoder layers, 768 embedding
dimensions, an MLP ratio of 4, and 12 self-attention heads for all
encoder layers. The teacher model is pre-trained on the Imagenet-1K
dataset using the Dino method. The student model uses the original
ViT-Tiny architecture: 12 encoder layers, 192 embedding dimensions,
and an MLP ratio of 4. The number of self-attention heads for the first
and last encoder layers is 12, while the rest are 6.

Implementation Details: On the Cifar100, Cifar10, CINIC10, and
FGVC-Aircraft datasets during the Attention Locality Imitation stage,
the student model uses a randomly initialized ViT-Tiny architecture.
The teacher model, ViT-Base [3], is pre-trained on the Imagenet-1K
dataset [2] and is further fine-tuned on each of these datasets. In
the first stage, Attention Locality, with LOB set to 10, we trained on
unlabeled datasets for 300 epochs. We used a batch size of 256 and
a learning rate of 1 × 10−3. We used a cosine decay schedule with a

arm-up period of 5 epochs and the AdamW optimizer [43] with a
eight decay of 0.05. We utilized data augmentation techniques, which

nvolved random resizing and cropping, random horizontal flipping,
nd color jittering, and adjusted the image size to 224 × 224. The

student model produced in the first stage is used as the student model
for the second stage, while the teacher model continues to be the same
as in the first stage. The labeled dataset is trained for 300 epochs using a
batch size of 512 and a learning rate of 1×10−3. The data augmentation
used includes random resizing, random horizontal flipping, and Triv-
ialAugmentWide. The image size is adjusted to 224 × 224. In Eq. (14),
𝛼 is set to 4, and the temperature 𝑇 is set to 1. In both stages, the
teacher model ViT-Base is set to evaluation mode, and its gradients are
not calculated. In other datasets, a learning rate of 8 × 10−3 is used in
the ALI stage, the epoch is 1000, and the batch size is 64. In the LM
stage, a learning rate of 2×10−3 is used, the epoch is 500, and the batch
size is 512. Other parameters are consistent with the above parameters.
All of the training devices are Nvidia 3090 GPUs. We use Pytorch tools,
and our code is modified from timm [44].

5.2. Main results

As shown in Table 2, our method enables ViT-Tiny to achieve
competitive results on Cifar100 and Cifar10. ViT-Tiny + CIKD achieves
state-of-the-art performance on the Cifar100 dataset without pre-
training and outperforms it by 2.8%. It achieves state-of-the-art perfor-
mance on the Cifar10 dataset and outperforms pre-training the teacher
model for fine-tuning the paradigm. Lightweight ViT uses a pre-trained
teacher model without pre-training to obtain lightweight ViT that sur-
passes pre-training. It is worth mentioning that the performance of our
ViT-Tiny + CIKD is better than the methods using the latest pre-training
and fine-tuning paradigm. It should be noted that the parameters of
the baseline model in Table 2 are the same as the model parameters
we use, but our model parameters are rounded to one decimal place.
Specifically, following the application of our CIKD method, ViT-Tiny
requires no prior pre-training on extensive datasets but solely utilizes
existing pre-trained teachers for knowledge distillation.

Our approach enabled ViT-Tiny to obtain competitive results on the
Cifar100 dataset. Despite being 15.5 times smaller than the teacher
model, it retains 97.8% of the accuracy exhibited by the teacher model.
For the Cifar10 dataset, the model parameters are 15.5 times smaller
compared to the teacher model, yet the accuracy surpasses that of the
teacher model. Specifically, the Top-1 Accuracy of the student model
reaches 98.7%, whereas the teacher model achieves 98.6%.

To verify the generality of our method, we conduct experiments
on datasets from various domains and more minor scales. The results
indicate that we consistently outperform the current state-of-the-art

pre-training and fine-tuning paradigms. In Table 3, the dataset with
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Table 2
Top-1 accuracy (%) on Cifar100, Cifar10. All models are pre-trained on ImageNet-1K,
except ViT-Tiny+CIKD.

Method #Param (M) CIFAR10 [12] CIFAR100 [12]

Feedforward networks

ResMLP-S12 [45] 15.4 98.1 87.0

MLP-Mixer

Mixer-B/16-SAM [46] 59.0 97.8 86.4

ConvMLP

ConvMLP [47] 9.0 98.0 87.4

Vision transformer

Teacher:ViT-Base [11] 85.5 98.6 91.8
MAE-Tiny [48] 6.0 – 78.9
D-MAE-lite [48] 6.0 – 85.0
DeiT-Tiny [3] 5.7 98.1 86.1
CRATE-T [49] 6.1 95.0 78.9
ViTAE-T [50] 4.8 97.3 85.0
Mini-DeiT-Ti [51] 3.0 97.5 83.8
DearKD-Tiny [52] 5.0 97.5 85.7
CSKD-Ti [53] 6.0 98.5 87.0

Student:ViT-Tiny+CIKD 5.5 98.7 89.8

‘‘*’’ represents the accuracy obtained by training the ViT-Tiny model
with the weights from the open-source ViT-Tiny model, following the
fine-tuning method outlined in the Ref. [48] on the dataset. Only ViT-
Tiny + CIKD is not pre-trained. The generality of our approach can be
seen by conducting experiments on several small datasets of different
types. We hope that our approach will advance the broader use of ViT
for vision tasks, especially for small datasets.

As shown in Table 1, even though the Oxford Flowers dataset only
has 2040 images and 102 categories, ViT-Tiny still achieves the same
accuracy as MAE-Tiny-FT [48] with the help of our method CIKD.
Where MAE-Tiny-FT represents pre-training and fine-tuning on the Im-
agenet dataset followed by a second fine-tuning on the Oxford Flowers
dataset. In contrast to MAE-Tiny-FT, which costs a lot of computational
power, we only need to use the existing pre-trained model ViT-Base
to distill the knowledge on the Oxford Flowers dataset to achieve
the same accuracy as the MAE-Tiny-FT. Our method still performs
excellently on the Chaoyang dataset in the medical domain. Since
Distilled MAE-lite and MAE-Tiny-FT do not have open-source weights,
we are unable to fine-tune them on the CINIC10 dataset and the sunrise
dataset. However, we also achieved better accuracy compared to other
pre-training methods.

5.3. Selection strategy for the learning objective block

We conducted experiments on six datasets derived from the Ci-
far100 dataset, each with varying class proportions, and on two ad-
ditional datasets with different selections of teacher model layers. The
teacher model for the different class-proportioned Cifar100 datasets is
trained using the respective datasets with varying class proportions.

To explore how the selection of the Learning Objective Block is
carried out, we extracted a certain percentage of subsets from the
CIFAR-100 dataset containing 50,000 images of the training set, as well
as from other datasets, for the experiments. It is worth noting that we
chose both the block of the first layer of the teacher model and the
Learning Objective Block to distill knowledge with the block of the
first layer of the student model and the block of the last layer. As
shown in Fig. 4, choosing a block from an inappropriate layer of the
teacher model as the Learning Objective Block can lead to suboptimal
performance. This is because the features in layers closer to the input
layer of the teacher model contain less semantic information, making
it easier to learn with a smaller dataset. Conversely, features in layers
farther away from the input layer of the teacher model contain more
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Table 3
Top-1 accuracy (%) on Oxford Flowers, FGVC-Aircraft, Stanford Cars, Oxford Pets, CINIC10, Chaoyang. All models are pre-trained on ImageNet-1K, except ViT-Tiny+CIKD.

Method #Param (M) Oxford Flowers [13] FGVC-Aircraft [14] Stanford Cars [18] Oxford Pets [16] CINIC10* [15] Chaoyang* [17]

Teacher: ViT-Base [11] 85.0 98.1 82.1 90.6 95.4 94.5 90.4
D-MAE-lite [48] 6.0 95.2 79.2 87.5 89.1 – –
DeiT-Tiny [48] 6.0 96.4 73.5 85.6 93.1 92.4 87.3
MoCov3-Tiny [48] 6.0 94.8 73.7 83.9 87.8 91.1 84.3
MAE-Tiny [48] 6.0 85.8 64.6 78.8 76.5 90.5 83.7
MAE-Tiny-FT [48] 6.0 96.8 78.1 87.6 93.2 – –
Student: ViT-Tiny+CIKD 5.5 96.8 79.7 88.1 93.5 93.7 88.5
Fig. 4. The effect of selecting block of different layers of the teacher model as the Learning Objective Block on the same dataset extracted at different scales and on different
datasets. Top-1 accuracy (%) is reported.
semantic information, hence making it more challenging to learn with
a smaller dataset.

In Fig. 4, ‘‘Flower’’ represents the Oxford Flowers dataset, and
‘‘Aircraft’’ represents the FGVC-Aircraft dataset. Similar situations are
observed on both datasets: as the amount of data decreases, we need to
choose features from layers close to the input layer of the teacher model
for knowledge distillation to achieve better results. There are 2040
training set images for Oxford Flowers and 6667 training set images
for FGVC-Aircraft. It is worth noting that when the amount of data is
small, choosing the Learning Objective Block for knowledge distillation
away from the input layer can lead to more severe model performance
degradation. Therefore, selecting a more appropriate layer for the first
stage of ALI can achieve better results.

5.4. Visualization analysis

CKA Similarity. Knowledge distillation aims to transfer information
from the teacher model to the student model, and the effectiveness
of knowledge distillation is typically assessed by measuring the sim-
ilarity between the teacher and student models. Therefore, we use
the Centered Kernel Alignment (CKA) to analyze the similarity of
representations between the student model and the teacher model:

𝐶𝐾𝐴(𝐾,𝐿) =
𝐻𝑆𝐼𝐶(𝐾,𝐿)

√

𝐻𝑆𝐼𝐶(𝐾,𝐾) ⋅𝐻𝑆𝐼𝐶(𝐿,𝐿)
(18)

assuming that 𝑋 and 𝑌 represent specific layer outputs of two feature
vectors, the Gram matrices for these two layers are defined as 𝐾 = 𝑋𝑋𝑇

and 𝐿 = 𝑌 𝑌 𝑇 . 𝐻𝑆𝐼𝐶 stands for the Hilbert–Schmidt Independence
Criterion [54].

Illustrated in Fig. 5, ‘‘ViT-Tiny + CIKD’’ corresponds to the model
employing the Curriculum Information Knowledge Distillation (CIKD)
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method. In contrast, ‘‘ViT-Tiny + LM’’ is indicative of models undergo-
ing knowledge distillation just through the Logit Mimicking (LM) stage.
‘‘ViT-Tiny + ALI’’ is associated with models that are distilled exclusively
using the initial stage Attention Local Imitation (ALI) method. Lastly.
‘‘ViT-Tiny + (ALI + LM)’’ denotes simultaneous training with the initial
stage Attention Local Imitation (ALI) method and the Logit Mimicking
(LM) method . ‘‘ViT-Base FT’’ denotes the teacher model that has been
fine-tuned. The incorporation of low-level semantic features in the
small dataset enhances the resemblance between the student model and
the teacher model. Conversely, focusing on high-level semantics during
the Logit MImicking stage results in diminished similarity. Notably, the
CIKD method manifests the most substantial similarity, indicating its
effectiveness in aligning the student model closely with the teacher
model’s representational space. The gap in model capacity resulted in
a decrease in CKA for both the student model and the teacher model in
the final layer.

Mean Attention Distance. To intuitively observe whether CIKD
enables the model to learn locality, we revealed the aggregation be-
havior of information in ViT’s attention mechanism, which is computed
through dot product operations from the compatibility between queries
and keys. Therefore, we analyze the Mean Attention Distance of all
tokens in different attention heads to assess the degree of aggregation
of local and global information. The attention distance for the 𝑗th token
in the hth head is calculated as follows:

𝐷ℎ,𝑗 =
∑

𝑖
softmax(𝐴ℎ)𝑖,𝑗𝐺𝑖,𝑗 (19)

where 𝐴ℎ ∈ R𝑙×𝑙 represents the attention map for the hth attention
head, 𝑙 is the number of tokens. 𝐺𝑖,𝑗 is the Euclidean distance between
the spatial positions of the 𝑖th and 𝑗th tokens.
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Fig. 5. CKA similarity between representations generated by ViT-Tiny with CIKD. ‘‘ViT-Tiny + CIKD’’ corresponds to the model employing the Curriculum Information Knowledge
Distillation (CIKD) method. In contrast, ‘‘ViT-Tiny + LM’’ is indicative of models undergoing knowledge distillation just through the Logit Mimicking (LM) stage. ‘‘ViT-Tiny +
ALI’’ is associated with models that are distilled exclusively using the initial stage Attention Local Imitation (ALI) method. Lastly. ‘‘ViT-Tiny + (ALI + LM)’’ denotes simultaneous
training with the initial stage Attention Local Imitation (ALI) method and the Logit Mimicking (LM) method. ‘‘ViT-Base FT’’ denotes the teacher model that has been fine-tuned.
As shown in Fig. 6, it is evident from (a) and (b) that learning high-
level semantic logit and simultaneously learning high-level semantic
logit along with low-level semantic features make it challenging for
ViT-Tiny to allocate attention effectively. However, in (c), it can be seen
that after the ALI stage, ViT-Tiny has learned the concept of locality.
By contrast, as observed in (d), after undergoing Curriculum Informa-
tion Knowledge Distillation (CIKD), the model’s attention allocation
becomes more rational, i.e., shallow blocks focus more on the local
while deep blocks concentrate more on the global.

CAM. In Fig. 7, the Class Activation Mapping (CAM) visualization is
conducted on an individual image from the Cifar100 dataset for an in-
depth analysis of attention weight distribution. The visualization in (d)
illustrates that, under the meticulous instruction of the teacher model,
the student model exhibits a heightened and more targeted focus on
the salient objects within the image. Contrastingly, in (c), the attention
distribution is notably more refined and judicious compared to the
initial states shown in (a) and (b). This highlights the effectiveness of
the gradual guidance provided by the teacher model in enhancing the
student model’s capacity for rational attention allocation. In conclu-
sion, the CAM visualization results show that the ViT-Tiny model can
correctly characterize the objects in the images by our CIKD method,
compared to the single-stage distillation method and the fusion of the
two stages into a single-stage distillation method.

5.5. Ablation study

To validate the design choices in our method, we conduct experi-
ments on the CIFAR100 dataset. In Table 4, we ablate our two-stage
method so that we can see that the easy-to-hard knowledge distillation
method we use is effective. In Table 5, we explore the generalizability
of our approach using ViT-Small as the student model, where the
teacher model ViT-Base has four times more parameters than the
student model ViT-Small. However, the accuracy of the student model
(91.4%) is indeed 99.5% of the accuracy of the teacher model (91.8%).
In Table 6, we explore the effect of various pre-training methods on
the CIKD of our method, from which we can see that the Dino pre-
training method is the most appropriate. In Table 7, we ablate 𝛼
of Eq. (13) in the second stage LM. In Table 8, we perform ablation
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experiments for knowledge distillation using only the Learning Target
Block and not the shallow block. From the experimental results, we can
see that good performance can only be obtained by using both shallow
and deep learning target blocks. In Table 9, we perform a two-stage
reversal to demonstrate the effectiveness of our knowledge distillation
method designed from easy to difficult. In Table 10, we ablate the
hyperparameter temperature (T) of the second-stage LM.

Design of two-stage distillation. We evaluate the effectiveness of
our proposed Curriculum Information Knowledge Distillation (CIKD)
through experiments with various configurations. Table 4 summarizes
the results: ‘‘Student: ViT-Tiny + ALI’’ uses the Attention Locality
Imitation (ALI) for 300 epochs followed by 300 epochs of fine-tuning.
‘‘Student: ViT-Tiny + LM’’ employs the Logit Mimicking (LM) for 600
epochs. ‘‘Student: ViT-Tiny + (ALI + LM)’’ denotes simultaneous train-
ing with ALI and LM for 600 epochs. ‘‘Student: ViT-Tiny + CIKD’’ begins
with 300 epochs of ALI training and continues with 300 epochs of LM.

Through the experiences of two single-stage models ‘‘Student: ViT-
Tiny + ALI’’ and ‘‘Student: ViT-Tiny + LM’’, it is evident that the
performance of single-stage models is inferior to that of two-stage
models. Moreover, even though the performance of ‘‘Student: ViT-
Tiny + LM’’ is significantly lower than that of ‘‘Student: ViT-Tiny +
ALI’’, it can be observed that the ALI played a crucial role in distilling
knowledge in the two-stage process. However, it is precisely due to our
proposed progressive knowledge distillation method, CIKD (from easy
to difficult), that allows these two approaches to be effectively com-
bined, resulting in the best performance. The simultaneous two-stage
knowledge distillation approach denoted as ‘‘Student: ViT-Tiny + (ALI
+ LM)’’, exhibited poorer performance, reflecting the importance of the
progressive two-stage distillation process from easy to difficult. Patient
teachers who gradually impart knowledge from low-level feature infor-
mation to high-level logit information can achieve higher performance,
as shown in Table 4. It is observed that simultaneously imparting both
types of knowledge directly leads to subpar performance (ViT + (ALI +
LM)), accuracy of 66.3%.

Different teacher-student settings. As shown in Table 5, we ex-
plored the universality of our method and conducted experiments on
other teacher-student model pairs. It can be seen from the results
that our method has been effective for ViT-Base and ViT-Small. The
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Fig. 6. Mean Attention Distance for ViT-Tiny at different stages. ‘‘(a) ViT-Tiny + LM’’ is indicative of models undergoing knowledge distillation just through the Logit Mimicking
(LM) stage. ‘‘(b) ViT-Tiny + (ALI+ LM)’’ denotes simultaneous training with the initial stage Attention Local Imitation (ALI) method and the Logit Mimicking (LM) method. ‘‘(c)
ViT-Tiny + ALI’’ is associated with models that are distilled exclusively using the initial stage Attention Local Imitation (ALI) method. Lastly. ‘‘(d) ViT-Tiny + CIKD’’ corresponds to
the model employing the Curriculum Information Knowledge Distillation (CIKD) method. Mean Attention distance is computed for 128 example images by averaging the distance
between the query pixel and all other pixels, weighted by the attention weight. Each dot shows the mean attention distance across images for one of 16 heads at one layer. Image
width is 224 pixels [1].
Table 4
Results of ablation experiments for two-stage method.

Method #Param (M) Top-1 Acc (%)

Teacher: ViT-Base 85.5 91.8
ViT-Tiny + ALI 5.5 85.5
ViT-Tiny + LM 5.5 60.5
ViT-Tiny + (ALI + LM) 5.5 66.3
ViT-Tiny + CIKD 5.5 89.8

Table 5
Results of ablation experiments for different teacher-student settings.

Method #Param (M) Top-1 Acc (%)

Teacher: ViT-Base 85.0 91.8
ViT-Small + CIKD 21.5 91.4
ViT-Tiny + CIKD 5.5 89.8

hyperparameterization used is consistent with ViT-Base and ViT-Tiny,
which also proves the effectiveness of our layer selection strategy. We
use ViT-Small, which shrinks our parameters by a factor of almost 4
compared to the teacher model ViT-Base, but has 99.5% of the accuracy
of the teacher model. It also demonstrates the generality of the selection
strategy for the Learning Objective Block.

Different pre-training methods for teacher model. To explore
which pre-training method is most suitable for the knowledge dis-
tillation of our method, we experiment with supervised pre-training
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Table 6
Results of ablation experiments for different teacher-student settings.

Method Top-1 Acc (%) of ViT-Tiny

Deit [3] 88.4
MAE [55] 88.1
MocoV3 [56] 87.6
Dino [11] 89.8

Table 7
The results of the ablation study for 𝛼 in Eq. (13).
𝛼 1 2 3 4 5 6 7

Top-1 Acc (%) 89.4 89.7 89.7 89.8 89.8 89.6 89.4

methods, masked image modeling pre-training methods, and compara-
tive learning pre-training methods and find that the Dino pre-training
method is the most suitable.

𝛼 of Eq. (13). As shown in Table 7, to verify the impact of the
hyperparameter 𝛼 in the second stage of LM, we test various values of 𝛼
distributed within the range [1, 7]. Setting 𝛼 to extremely large or small
values could hinder the model’s performance. The best performance
was obtained with values of 𝛼 between 3 and 4, with larger or smaller
values causing performance degradation.

Only the Learning Objective Block. To validate the effective-
ness of the learning target block selection strategy, i.e., selecting both
the shallow block and the Learning Objective Block, we conduct ex-
periments in which only the single-level Learning Objective Block is
selected. The results are shown in Table 8. Distilling features from
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Fig. 7. Visualization of the last layer’s Self-Attention in ViT-Tiny and each head using CAM. Brighter colors represent higher weights assigned by Self-Attention, while black
indicates the background. ‘‘(a) ViT-Tiny + LM’’ is indicative of models undergoing knowledge distillation just through the Logit Mimicking (LM) stage. ‘‘(b) ViT-Tiny + (ALI + LM)’’
denotes simultaneous training with the initial stage Attention Local Imitation (ALI) method and the Logit Mimicking (LM) method. ‘‘(c) ViT-Tiny + ALI’’ is associated with models
that are distilled exclusively using the initial stage Attention Local Imitation (ALI) method. Lastly. ‘‘(d) ViT-Tiny + CIKD’’ corresponds to the model employing the Curriculum
Information Knowledge Distillation (CIKD) method. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 8
Results of the ablation study with only the Learning Objective Block.

Single teacher layer 7 8 9 10 11 12

Top-1 Acc (%) 86.8 87.2 88.1 88.3 88.6 88.2

a single layer of the teacher model leads to suboptimal performance
compared to using features from two layers. This is due to the chal-
lenge of achieving robust convergence when optimizing deep network
layers solely through backpropagation. This observation indirectly un-
derscores the effectiveness of selecting two teacher model layers for
distillation.
11 
Reversal of two-stage distillation. To verify the rationality of
our two-stage method and the effectiveness of the two-stage distilla-
tion from easy to difficult, our two-stage distillation method will be
reversed, first performing Logit Mimicking (LM) distillation and then
performing Attention Locality Imitation (ALI) distillation. As shown in
Table 9, where ViT-Tiny + LM + ALI denotes LM distillation followed
by ALI distillation, it can be observed from the results that our CIKD
method yields better performance. The performance improvement of
the two-stage approach relative to using only a single stage of ALI is
not significantly enhanced. One possible reason is that the LM stage
is performed first, resulting in the student model not learning much
‘‘dark knowledge’’ as in the CIKD, which undergoes the first stage of
ALI followed by the second stage of LM, due to the advanced semantic
properties of logits and labels.
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Fig. 8. Trade-off between training time and performance. Different line segments represent different training times in the first stage of ALI. The first-stage ALI with different
training times is subjected to the second-stage LM training for 1000 epochs, and the performance changes of every 100 epochs are observed.
Table 9
Results of ablation experiments for reversal of two-stage distillation.

Method #Param (M) Top-1 Acc (%)

Teacher: ViT-Base 85.5 91.8
ViT-Tiny + LM + ALI 5.5 87.1
ViT-Tiny + CIKD 5.5 89.8

Table 10
Ablation results of Temperature (T).

Temperature (T) 1 2 3 4 5

Top-1 Acc (%) 89.8 89.3 89.2 89.1 89.1

Temperature (T). It can be seen from Table 10 that as the temper-
ature (T) increases, the model accuracy gradually decreases. Therefore
the temperature (T) is set to 1 by default in our experiments.

Trade-off between training time and performance. As shown in
Fig. 8, we set different training times for the two stages to explore the
impact of training time on model performance. Our approach is able to
achieve state-of-the-art performance within a total of 600 epochs over
two phases, with further increases in training duration only marginally
improving performance.

6. Conclusions and future work

In this study, we have investigated a simple and efficient method
that significantly improves the performance of ViT on small datasets.
We have also introduced a selection strategy for the Learning Objective
Block for teacher model on small datasets. When training ViT from
scratch with limited data, it is challenging for the model to learn
the local information in images. To address this issue, we proposed
a knowledge distillation approach that combines curriculum learning.
Our approach allows the student model to learn from easy to hard
by first focusing on low-level semantic features for local information
in the first stage and then incorporating high-level semantic logits
and label information in the second stage. Extensive experiments have
demonstrated the effectiveness and applicability of our method across
8 small-scale datasets, achieving competitive accuracy compared to the
12 
pre-training and fine-tuning paradigms. Furthermore, we validate the
effectiveness of our approach through various visualization analyses.
We believe that our method will advance the wider application of ViT
in visual tasks, particularly in scenarios with small datasets.

Future Work: We only experimented on the classification task with-
out evaluating dense-prediction downstream tasks, i.e., object detection
and segmentation. We leave this for further work. However, after
applying our CIKD method, the model’s feature extraction capability
has been enhanced, and we believe it will also perform well in other
tasks.
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